

European Union European Regional Development Fund

REPORT ON EFFECTIVNESS OF DECONTAMINATION METHOD USED IN PILOT-TEST

At the object Former Heavy Fuel Oil Facilities of Valmieras Siltums, Ltd. Dzelzceļa Street 9, Valmiera

> Riga, September, 2018- May, 2019

REPORT ON EFFECTIVNESS OF DECONTAMINATION METHOD USED IN PILOT-TEST

At the object Former Heavy Fuel Oil Facilities of Valmieras Siltums, Ltd. Dzelzcela Street 9, Valmiera

The customer: Valmiera city council Reg. No. 40003286750, Lāčplēša street 2, Valmiera, LV- 4201

The contractor:

"Vides Konsultāciju Birojs" Ltd., Reg. No. 40003282693, Rīga, Pils street 7-11, LV-1050.

Monitoring:

"Vides Konsultāciju Birojs", Ltd., Reg. No. 40003282693, Rīga, Pils street 7-11, LV-1050.

Prepared by:

P. Birzgalis, project manager

Ezermalas iela 28, Rīga, LV-1014 Tālr.: +371 67 557 668 Fakss: +371 67 801 703 birojs@vkb.lv www.vkb.lv

TABLE OF CONTENTS

TABLE OF CONTENTS	3
1. INFORMATION ON THE METHPD USED FOR DECONTAMINATION	4
Description of object of decontamination	4
Description of decontamination method used	5
2. THE OBJECTIVE OF DECONTAMINATION WORKS AND THE outlined GOAL	7
The objective of decontamination works	7
The outlined goal	7
The actual result of decontamination works	7
3. THE EFFECTIVENESS AND POTENTIAL OF THE METHOD	8
Effectiveness of the method	8
Further use of this method at the object	8
Use of the method at similar objects	8
Suggestions to improve the effectiveness of the method	9
CONCLUSIONS	10

Central Baltic Innovative Sustainable Remediation

1. INFORMATION ON THE METHOD USED FOR DECONTAMINATION

Description of object of decontamination

The object of environmental decontamination pilot- project is the Former Heavy Fuel Oil Facilities, located south of Valmiera city, at the industrial zone of the city (Cadastral No. 96010132220).

According to 20.11.2001 Cabinet Regulation No. 483 "Identification and registration of Contaminated and potentially contaminated sites" this object is registered in "Register of contaminated and potentially contaminated sites" (No. 0250000/0001) as contaminated site. Moreover, during research works¹ in 2017, soil and groundwater contamination with oil products was discovered.

¹ "Report on geo-ecological research works at the object The Former Heavy Fuel Oil Facilities", Dzelzceļa Street 9, Valmiera. May- October, 2017, Riga. Birzgalis P., 146 pages.

SIA "Vides Konsultāciju Birojs", Ezermalas iela 28, Rīga, LV-1014 Web: http://www.vkb.lv ; E-pasts: birojs@vkb.lv

Description of decontamination method used

Considering the objective of project "INSURE" and the customer choice, a decision was made to carry out a pilot-test for remediation of environmental contamination using *in-situ* electric- kinetic bio-stimulation method.

Essentially the method used is a combination of multiple alternative methods of decontamination, such as electric- kinetic and biological methods.

The working principle of methods used is generally simple- contamination of oil products has an organic origin, therefore, it degrades naturally with time. It is done by reprocessing local bacterial cultures. However, natural degradation processes are slow, especially in anaerobic environment, thus, natural bacterial activity is stimulated using electrokinesis with direct current, additional nutrients (ammonium nitrate solved in water) and biological detergent (cyclodextrin), which helps to free the soil particles from oil products.

Pärskats PAR SANÄCIJAS PILOTTESTU METODES EFEKTIVITÄTI objektä Mazuta bäze" Valmierä, Dzelzceļa ielā 9

European Union European Regional Development

Image No. 3 Nutrient/ detergent solution injection in cathode borehole (K2)

Negative direct current pole was attached to the cathode rod, but the positive pole was attached to the anode rod. Electron movement is happening from anode to cathode up to depth of 4 m in soil, this should theoretically help to transport the dissolved nutrients from anode wells to cathode wells. During electrokinesis process, heat is released, which is an additional factor that helps bacteria and micro-organisms to increase the size of their populations.

European Union European Regional

European Regional Devel: 2. THE OBJECTIVE OF DECONTAMINATION WORKS AND THE OUTLINED GOAL

INSURE

The objective of decontamination works

erreg

Central Baltic

The goal of the decontamination works is to prevent harm to human health and life, and to create a safe environment for further economic development. This shall be done by improving the quality of environment at the object of the Former Heavy Fuel Oil Facilities, Dzelzceļa Street 9, Valmiera, by limiting new negative emissions, reducing previously detected soil (and potentially groundwater) contamination with oil products to the level not less than described in Cabinet Regulation No. 804 "Regulations on soil and ground quality", point 3 and 4, and Cabinet Regulation No. 118 "Regulations Regarding the Quality of Surface Waters and Groundwaters", Annex 10, part II, Table 2. At the end of the project, the foreseen decrease in contamination is predicted to be no less than 60-70% of the initial contamination levels (if groundwater contamination will be discovered during the project).

The main goal and objective is to carry out an experimental project to eliminate contamination using electric- kinetic *in-situ* method with bio-stimulation, and to investigate the appropriateness of this method to the local conditions and potential to use it for further decontamination works at this and other contaminated objects.

The outlined goal

In an experimental area (6 x 6 m) up to the depth of 4 m, the potential decrease of contamination will be evaluated- the contaminated size of the area and intensity of contamination will be decreased at the end of the project. Optimistically, during the experiment, the area will be decontaminated up to such level, that further on no harm to human health or environment will be present and the specific area will be suitable for specific economic activity, and the experimental area will undergo self-purification (contamination level in soil will be less than 500 mg/kg).

At the end of the pilot-test it will be possible to evaluate the appropriateness of such decontamination method for climate in Latvia, the costs for this and other potential objects.

The actual result of decontamination works

At the end of the project no significant decrease in contamination of oil products in soil was observed¹. During span of 7 months, the average oil product concentration in soil samples had decreased by approximately 10%, which cannot be considered to be a substantial decrease. However, groundwater contamination has increased compare to the initially detected contamination concentration. The floating oil product layer above groundwater has not changed significantly, and throughout the decontamination works it stayed between 4-6 cm in thickness.

European Regional Development flum#FINAL REPORT ON SOIL AND GROUNDWATER MONITORING at the object the Former Heavy Fuel Oil Facilities, Dzelzceļa Street 9, Valmiera " Riga, VKB, May, 2019, Birzgalis P.

3. THE EFFECTIVENESS AND POTENTIAL OF THE METHOD

Effectiveness of the method

Analysing regulations on decontamination levels (Cab. Reg. No. 804 and 118.), it is safe to say that decontamination works in territory of Latvia can be considered successful if soil purification is done 10-fold in volume form the initially measured levels, but groundwater decontamination must reach 70% from the initial contamination levels. Such decontamination levels are extremely hard to reach, therefore, more primitive but also more effective method is used- excavation of contaminated array and cleansing *ex-situ* (usually done in a specialized polygon).

Monitoring does not show a significant increase in environmental purification a the object, therefore, we conclude that within the specific geological conditions and such type of contamination, this method is deemed ineffective.

The expenses of the project, which includes the installation of the system and energy necessary to keep it running for 7 months to achieve an improvement by 10%, can be compared to the expenses of almost complete decontamination of the object when using above mentioned more primitive excavation method *ex-situ*. Theoretically, complete decontamination of the object using this innovative method would be 8-10 times more expensive than any other method. Additionally, it is complicated to give an estimate of time needed to achieve complete decontamination of object using this method.

Further use of this method at the object

Decontamination method using electric- kinetic bio- stimulation at this specific object cannot be considered to be effective. This includes the level of decontamination reached, the finances and time consumed. It would not be reasonable to continue using this method for further decontamination works at the object.

Use of the method at similar objects

Considering geological conditions in Latvia, where sediments from the last glacial period dominate the land (mostly not homogenous), such theoretical decontamination methods do not work here.

The use of this specific method in Latvia for decontamination of objects from heavy oil fuel is not considered to be rationally reasonable and justified, because it is complicated to estimate the effectiveness of the method as well as the length and expenses of it.

Suggestions to improve the effectiveness of the method

In order to improve the effectiveness of this method, several improvements should be applied:

- 1) To increase the power of transformer and diameter of electrodes (<24 mm, preferably rifled rods), to maximally increase the area of electrodes.
- Insertion of electrodes done in horizontal system of wells instead of vertical wells. They can be made of material which allows drainage. This will ensure the maximal increase in contact area and infiltration area for potential nutrients.
- 3) Injections of nutrients should be made automatic so there is no interruption of delivering them. Systems should be equipped with telemetry, thus allowing to follow the technical conditions of the system.
- 4) Necessary to insert device which signalizes about the temperature changes in the soil- continuous temperature monitoring.
- 5) This specific method could be used in sandy, homogenous soil with low groundwater level in order to use electric energy more effectively- in Latvia such place is Talsi region.

European Regional

Central Baltic

1. During period from August 8, 2018- May, 2019, "Vides Konsultāciju Birojs" Ltd, carried out a decontamination pilot-project- installation of the systems, maintained it running throughout the project, and performed monitoring at the object at Dzelzceļa Street 9, Valmiera.

INSURE

- 2. During the project, in total 8 boreholes were installed at the depth of 4.0 m, which were equipped with perforated wells. In each borehole there was a 5.0 m long electrode rod. Electrode rods were attached to an electrified direct current generator, which operated from September 24, 2018 until April 24, 2019 (7 months). Once a week nutrients and detergent were injected into the boreholes and on to the top soil of pilot area, according to the suggestions from experts from University of Helsinki.
- 3. Obtained results show insignificant reduction in soil contamination (~10%) and even increase in groundwater contamination.
- 4. During monitoring stages, floating oil product layer in monitoring well No. 11 has not practically changed.
- 5. This specific remediation method used at the object in considered to be ineffectivefinancially and time-wise.
- 6. The use of this method at different objects within the territory of Latvia is questionable, because of characteristics of heavy fuel oil contamination (low solubility, high viscosity, its various content), as well as because of local geological characteristics (high groundwater levels).

European Regional Development Fund

European Union European Regional Development Fund

FINAL REPORT

ON SOIL AND GROUNDWATER MONITORING

(Pilot- test monitoring – sampling & analysis)

At the object Former Heavy Fuel Oil Facilities of Valmieras Siltums, *Ltd* Dzelzceļa Street 9, Valmiera

> Riga, May, 2019

FINAL REPORT ON SOIL AND GROUNDWATER MONITORING

At the object Former Heavy Fuel Oil Facilities of SIA Valmieras Siltums Dzelzceļa Street 9, Valmiera

THE CUSTOMER:

THE CONTRACTOR:

Valmiera City Council Contract No. 05-651/2.4.4.1/18/71 (from 07.08.2018.)

Prepared by:

"Vides Konsultāciju Birojs", Ltd

Pēteris Birzgalis Geologist

z.v.

Ezermalas iela 28, Rīga, LV-1014 Tālr.: ***371 67 557 668** Fakss: ***371 67 801 703** birojs@vkb.lv www.vkb.lv

objektā Mazuta bāze" Valmierā, Dzelzceļa ielā 9

TABLE OF CONTENTS 1.2. Hydrogeology......6 Selection of borehole sites7 2.1. Drilling works and the collection of soil samples9 2.2. 2.4. Laboratory testing of samples11 3. SOIL QUALITY 12 4. GROUNDWATER QUALITY......14 CONCLUSION 15 Plan of extraction site

INSURE

terreg

Central Baltic

ANNEX 2

List of intervals for sample collection and copies of laboratory testing reports

ANNEX 3

Copies of licences for the use of subterranean depths and accreditation certificates

European Union European Regional Development Fund

INTRODUCTION

Central Baltic

This report overviews data on soil and groundwater monitoring and laboratory testing at the potentially contaminated site "Former heavy fuel oil facilities of Valmieras Siltums, Ltd", Dzelzceļa Street 9, Valmiera.

ISURE

Sample taking and testing was done accordingly to the procedure of procurement No. VPP 2018/040P and mutually signed contract No. 05-651/2.4.4.1/18/71 (starting from 07.08.2018) between the municipality of Valmiera and Vides Konsultāciju Birojs, Ltd.

The objective: To perform cleanup/ remediation of a potentially contaminated site (is included in the Register of Contaminated and Potentially Contaminated Sites) within the scope of project "INSURE", using electrokinetic *in situ* method- pilot testing. It is planned to carry out soil and groundwater monitoring and testing, in order to evaluate the changes of contamination during the remediation process. This is one of the most significant factors to evaluate the effectiveness of this method.

Detailed phase of performed works: monitoring stage.

Following was carried out in several phases:

- 1) The drawing up and approval of the scope of work and timing with customer and partners (experts) from Helsinki university;
- 2) the surveying of the territory jointly with the customer and the partners (experts) from Helsinki university;
- 3) Decision making mutually with the customer and partners (experts) from Helsinki university on the borehole location map;
- 4) field works: geological drilling (3 pcs. boreholes in site and 2 pcs. boreholes off site), collection of generalized soil samples;
- 5) secondary field works: pumping the water out of groundwater wells, *in situ* tests of physical and chemical parameters of groundwater, collection of samples;
- 6) laboratory testing of soil and groundwater sample quality in terms of contamination with oil products and general contamination parameters;
- 7) Summary of the results and preparation of the report.

See the following sections of the review for a detailed description of the performed works, obtained results, and conclusions.

European Regional Development Fund

Gala pārskats PAR GRUNTS UN GRUNTSŪDENS MONIOTIRNGU

objektā Mazuta bāze" Valmierā, Dzelzceļa ielā 9

1. GEOLOGY AND HYDROGEOLOGY

1.1. Geology

Geomorphologically the object is situated in the Trikāta rise of Ziemeļvidzeme lowland.

The thickness of Quaternary sediment in this part of Latvia is small and varies within the limits of 10 to 20 m and consists mainly of moraine sandy loam and loam poorly filtering water, as well as erratic masses of different type, as well as individual sand - gravel inclusions.

The evaluation of the data of the Geological Map of Latvia¹ of the researched territory allows to conclude that sediments poorly filtering water - sandy loam and loam can be expected in the territory under research.

The geological cross-section of the territory surveyed during the research works is comparatively simple - its upper part consists of Quaternary sediment layer on top of mid-Devonian base rock.

The geological cross-section of the object is as follows (from top to bottom) - soil or asphalt, concrete, stone chippings. Under the soil layer there is a mixed loam or earth-filled gravel with construction waste. The natural cross-section is opened to the depth of 0.6 - 1.8 m and consists of fine sand or sandy loam. Deeper, at the depth of 3.5 - 4.0 m a hard sandy loam with intermediate layers of pebbles and sand, which has been found up to the depth of approximately 16 m within the researched territory.

The overall filtration properties of Quaternary water-saturated are poor and not favourable for the migration of potential groundwater contamination either in the plan or cross-section (Kf of loose soil in the samples taken at the level of groundwater saturation is 0.3 - 0.8 m within a day).

¹ Geological Map of Latvia, 1:200 000, State Geological Service 1998

objektā Mazuta bāze" Valmierā, Dzelzceļa ielā 9

1.2. Hydrogeology

Central Baltic

The hydro-geological situation at the object and in its vicinity is primarily affected by the geo-morphological and geological properties of its location, weather conditions and the network of drainage ditches, which serve as the principal groundwater table runoff carriers.

ISURE

Groundwater table has been detected at varying depth in this region, however in the slacks (site of the researched object) it seldom exceeds 0.3-1.0 m, which promotes bogging. In elevated territories the groundwater is frequently associated with deeper water horizons of Gauja and Burtnieki suites. Regionally, the potential hazard of artesian horizon contamination is reduced by the fact that these waters are drained by the deep Gauja valley and the contamination enters surface waters.

During the drilling works, the groundwater was detected at the depth of 1.0 - 2.5 m, meanwhile, after the installation of monitoring wells and settlement of the levels, the groundwater table was detected at the depth of 1.70 - 2.32 m from the ground surface.

Considering the amount of the performed works, the direction of groundwater flow can be determined rather precisely, it is directed westwards or towards the railway embankment and the adjacent ditch, as well as towards the slightly more remote depression in the earth surface (slack).

2. METHODOLOGY OF PERFORMED WORKS

Central Baltio

2.1. Selection of borehole sites

Upon the selection of borehole sites, the work order, the work program, the spatial planning (including the location of tanks, buildings and unloading areas), as well as the potential geological and hydrogeological conditions of the area and recommendations from experts University of Helsinki.

ISURE

Installation of boreholes was done three times, as agreed in the contract:

- 1. In September 20-21, 2018, anode and cathode boreholes were installed, as well as 5 boreholes for soil monitoring;
- 2. In April 24, 2019, , 5 soil monitoring boreholes were installed
- 3. In January 15, 2019, 5 soil monitoring boreholes were installed.

Boreholes for soil sampling were installed in 30-50 cm radius for each stage of monitoring, so that mutually comparative results could be obtained.

Borehole installation works for soil sampling were always carried out in the following stages:

- The first two borehole installation accordingly to recommendations from expert Martin Romantschuk (University of Helsinki);
- The other three borehole installation at the central part of the pilot test polygon, accordingly to recommendations from expert Martin Romantschuk (University of Helsinki).

objektā Mazuta bāze" Valmierā, Dzelzceļa ielā 9

Central Baltic

Image No. 1

Soil sampling at the object, fall, 2018.

Image No. 2

Soil sampling at the object, spring, 2019.

The performer of monitoring collecting and sampling has a licence No. CS18ZD0270 (valid by 01.11.2019) issued by SES of the republic of Latvia.

SIA "Vides Konsultāciju Birojs", Ezermalas iela 28, Rīga, LV-1014 Web: http://www.vkb.lv ; E-pasts: birojs@vkb.lv

2.2. Drilling works and the collection of soil samples

INSURE

erreg

Central Baltic

Drilling works for the collection of soil samples and for the drawing up of geological cross-section were performed using spiral drilling method. A spiral drilling method was used to drill 5 holes up to depth of 4 meters. During the drilling, the groundwater appeared at the depth of 2.0-2.5 m from the earth surface.

The following devices/rigs and methods have been used for the works: *Fraste Terra- In* and drilling machine *Nordmeyer DSB 3.1/5*. The method used was spiral drilling with the D of 100mm and 136 mm, class C and D samples.

Image No.1

During the drilling works, soil samples were taken from each borehole in accordance with ISO 10381-5 standard. Soil samples were predominantly taken at four different intervals of depth - depth of 0.0 -0.1 m, 1.0-2.0m, 2.0- 3.0m and 3.0- 4.0m, thus enabling to determine the intensity of changes of contamination at different depths. Each sample weighed around 100- 200 grams. Each sample during the field works was split in two parts, one was sent to Ltd. "Vides Konsultāciju Birojs" for testing, but the other part was sent to University of Helsinki.

European Union European Regional Development Fund

objektā Mazuta bāze" Valmierā, Dzelzceļa ielā 9

The soil taken out during the drilling process, was used for laboratory testing (30%) and the remaining 70 % of soil that was taken extracted was used to fill up boreholes, therefore, excessive soil which could be considered as hazardous waste, was not gathered.

INSURE

nterreg

Central Baltic

Sampling boreholes were installed in 30-50 cm distance to the ones installed previously, to ensure the sampling conditions were similar.

European Union European Regional Development Fund

2.3. Groundwater and underground water sample collection

ISURE

Central Baltic

Groundwater samples were taken according to standard LVS ISO 5667-11:2011, in April 24, 2019, using polytetrafluoroethylene cylinder. Before collection of samples, the wells were purified from the small soil particles. During the process of purification, physical and chemical properties of groundwater were measured (pH, electrical-conductivity, and others) using calibrated instrument. Aforetime collection of samples, water was drawn off (equal to the volume of three wells) in order to achieve precise and representative groundwater results from the horizon. Floating oil product layer was detected and measured (if it was present) in the wells. In well No. 11, where floating oil product layer was detected, its thickness was measured. In total 2 groundwater samples were taken, which were prepared and packed accordingly and delivered to laboratory for further testing.

2.4. Laboratory testing of samples

Soil and groundwater samples were placed in a chemically clean, appropriate thermo-containers and delivered to an accredited laboratory for further testing. Before taking samples, temperature measurements were taken inside the boreholes. Collected samples were divided in two identical parts, from which one was delivered for further testing in Latvia, but the other was given to representatives from Helsinki University.

Testing of samples was done by an accredited laboratory "Vides Konsultāciju Birojs", Ltd.

Gala pārskats PAR GRUNTS UN GRUNTSŪDENS MONIOTIRNGU

objektā Mazuta bāze" Valmierā, Dzelzceļa ielā 9

3. SOIL QUALITY

During monitoring stage of this project there were in total 92 soil samples tested for oil product concentration (C10-C20 and C20-C40):

INSURE

nterreg

Central Baltic

- 1. Monitoring Stage 1 (20.-21.09.2018.), 32 samples taken from electrode installation boreholes and 20 samples from monitoring boreholes.
- 2. Monitoring Stage 2 (15.01.2019.), 20 samples taken from monitoring boreholes.
- 3. Monitoring Stage 3 (24.04.2019.), 20 samples taken from monitoring boreholes.

Below is the summary of laboratory results for soil samples tested.

Table 1

			20	2021.09.2018 15.01.2018 24.04.2019								
σ	-					Concentrat	ion in soil s	ample, mg/	kg			
tle an	val (m ace)	de Te					Oil produc	ts				
Sampling site tit No.	Sampling interv from the surf	Sample co	C10-C20	C20-C40	C10-C40	C10-C20	C20-C40	C10-C40	C10-C20	C20-C40	C10-C40	
	0.0-1.0	VALM-K-1-1	50	45	95	-	-	-	-	-	-	
V1	1.0-2.0	VALM-K-1-2	570	140	710	-	-	-	-	-	-	
κı	2.0-3.0	VALM-K-1-3	3100	770	3870	-	-	-	-	-	-	
	3.0-4.0	VALM-K-1-4	560	160	720	-	-	-	-	-	-	
	0.0-1.0	VALM-K-2-1	250	160	410	-	-	-	-	-	-	
K2	1.0-2.0	VALM-K-2-2	3100	750	3850	-	-	-	-	-	-	
	2.0-3.0	VALM-K-2-3	6200	1300	7500	-	-	-	-	-	-	
	3.0-4.0	VALM-K-2-4	1200	150	1350	-	-	-	-	-	-	
	0.0-1.0	VALM-K-3-1	65	34	99	-	-	-	-	-	-	
V2	1.0-2.0	VALM-K-3-2	4500	540	5040	-	-	-	-	-	-	
кэ	2.0-3.0	VALM-K-3-3	4000	350	4350	-	-	-	-	-	-	
	3.0-4.0	VALM-K-3-4	570	90	660	-	-	-	-	-	-	
	0.0-1.0	VALM-K-4-1	84	37	121	-	-	-	-	-	-	
КЛ	1.0-2.0	VALM-K-4-2	2700	480	3180	-	-	-	-	-	-	
K4	2.0-3.0	VALM-K-4-3	2700	4 4 0	3140	-	-	-	-	-	-	
	3.0-4.0	VALM-K-4-4	160	32	192	-	-	-	-	-	-	
	0.0-1.0	VALM-A-1-1	<2.6	<2.6	<5.2	-	-	-	-	-	-	
A1 -	1.0-2.0	VALM-A-1-2	36	5.2	41.2	-	-	-	-	-	-	
	2.0-3.0	VALM-A-1-3	31	3.4	34.4	-	-	-	-	-	-	
	3.0-4.0	VALM-A-1-4	20	4.4	24.4	-	-	-	-	-	-	
A2	0.0-1.0	VALM-A-2-1	21	3.5	24.5	-	-	-	-	-	-	

Content of oil products in soil samples

SIA "Vides Konsultāciju Birojs", Ezermalas iela 28, Rīga, LV-1014

European Union

European Regional Development Fund

objektā Mazuta bāze" Valmierā, Dzelzceļa ielā 9

I	1020		20	0.0	27.0		I	I	I	l	1
	1.0-2.0	VALIVI-A-2-2	29	8.9	37.9	-	-	-	-	-	-
	2.0-3.0	VALM-A-2-3	30	6.5	36.5	-	-	-	-	-	-
	3.0-4.0	VALM-A-2-4	<2.6	<2.6	<5.2	-	-	-	-	-	-
	0.0-1.0	VALM-A-3-1	29	5.4	34.4	-	-	-	-	-	-
A3	1.0-2.0	VALM-A-3-2	22	3.9	25.9	-	-	-	-	-	-
	2.0-3.0	VALM-A-3-3	27	3.8	30.8	-	-	-	-	-	-
	3.0-4.0	VALM-A-3-4	61	10	71	-	-	-	-	-	-
	0.0-1.0	VALM-A-4-1	36	15	51	-	-	-	-	-	-
A 4	1.0-2.0	VALM-A-4-2	32	11	43	-	-	-	-	-	-
A4	2.0-3.0	VALM-A-4-3	28	10	38	-	-	-	-	-	-
	3.0-4.0	VALM-A-4-4	23	7.8	30.8	-	-	-	-	-	-
E1	0.0-1.0	VALM-F-1-1	100	61	161	13	<2.6	13	22	25	13
(outside	1.0-2.0	VALM-F-1-2	1200	300	1500	1800	300	2100	95	27	122
the	2.0-3.0	VALM-F-1-3	710	190	900	18	14	32	130	60	190
polygon)	3.0-4.0	VALM-F-1-4	68	36	104	140	40	180	55	28	83
E2	0.0-1.0	VALM-F-2-1	37	31	68	150	45	195	26	30	56
(outside	1.0-2.0	VALM-F-2-2	48	16	64	6	<2.6	6	8	4	12
the	2.0-3.0	VALM-F-2-3	44	11	55	5.7	<2.6	5.7	4	<2.6	4
polygon)	3.0-4.0	VALM-F-2-4	12	9	21	6.1	<2.6	6.1	8	<2.6	8
	0.0-1.0	VALM-S-1-1	19	5.2	24.2	49	19	68	10	5	15
S1 (inside	1.0-2.0	VALM-S-1-2	1000	210	1210	14	8	22	1400	190	1590
the polygon)	2.0-3.0	VALM-S-1-3	1600	240	1840	520	70	590	1400	130	1530
polygon	3.0-4.0	VALM-S-1-4	54	7.4	61.4	71	10	81	23	4	27
	0.0-1.0	VALM-S-2-1	29	23	52	5	<2.6	5	18	69	5
S2 (inside	1.0-2.0	VALM-S-2-2	180	50	230	590	54	644	9	15	24
the	2.0-3.0	VALM-S-2-3	46	5.4	51.4	13	8	21	290	28	318
polygon)	3.0-4.0	VALM-S-2-4	15	<2.6	15	43	11	15	90	13	15
	0.0-1.0	VALM-S-3-1	19	3.3	22.3	12	<2.6	12	27	25	12
S3 (inside	10-20	VAI M-S-3-2	1900	610	2510	23	3	26	270	30	300
the	2.0-3.0	VAI M-S-3-3	420	110	530	950	120	1070	800	110	910
polygon)	3.0-4.0	VALM-S-3-4	52	16	68	1300	140	1440	160	17	177

Soil contamination threshold values²

Target value (A)	-	-	1	-	-	1	-	-	1
Precautionary threshold value (B)	ŀ	•	500	-	-	500	•	-	500
Intensive contamination threshold value (C)	-	-	5000	-	-	5000	-	-	5000

^{3.2.2.} Critical threshold value/intensive contamination (value C) — after reaching or exceeding this value, the soil and ground functional characteristics are severely affected, or the contamination directly can affect human health or environment. Exceeding this value requires decontamination work at the site.

² According to Cabinet Regulation No. 804 "Regulations on soil and ground quality", point 3, soil and ground quality has the following threshold values- 3.1.threshold value (value A)- maximal level when exceeded cannot ensure sustainable soil and ground quality.

^{3.2.} threshold values:

^{3.2.1.} precautionary threshold value (**value B**) — the maximal contamination level which when exceeded may potentially be harmful to human health or environment, as well as level which shall be reached after decontamination works (unless more strict requirements are not enforced).

Gala pārskats AR GRUNTS UN GRUNTSŪDENS MONIOTIRNGU

objektā Mazuta bāze" Valmierā, Dzelzceļa ielā 9

4. GROUNDWATER QUALITY

Below is the summary of groundwater testing results. Laboratory testing covered :

- Oil product content

nterreg

Central Baltic

- Total Nitrogen
- Environmental pH
- Floating Oil Product layer (in field conditions)

INSURE

At each stage of sample collection 2-3 samples of groundwater were tested. In total, during all stages of monitoring, 7 groundwater samples were collected and 3 floating oil product layer measurements were performed.

Tabula 1

			Concentration in groundwater							
Date of			Oil products, mg/l							
sample taking	Borehole title and No.	Sample code	C10-C40	Benzole (ug/l)	Toluene (ug/l)	Ethylbenzene (ug/l)	Xylene (SUM, ug/l)			
21.09.2018.	Monitoring well No. 5	VALM-GU-5	<0.072	-	-	-	-			
21.09.2018.	Monitoring well No. 9	VALM-GU-9	<0.072	-	-	-	-			
21.09.2018.	Monitoring well No. 10	VALM-GU-10	<0.072	-	-	-	-			
15.01.2019		VALM-GU-Ū11	1800	610	980	450	2150			
24.04.2019.	Wonitoring well No. 11	VALM-GŪ-U11	530	-	-	-	-			
15.01.2019.	Anada wall Na D	VALM-S-GŪ-2	1.5	<0.25	<0.25	<0.25	<0.5			
24.04.2019.	Anoue well NO. 2	VALM-GŪ-A2	45	-	-	-	-			

Oil product concentration in groundwater

Contamination threshold values in soil (Cab. Reg.

118.)5					
Threshold value (A)	-	0.2	0.5	0.5	0.5
Arithmetic mean	0.5	2.6	25.25	30.25	30.25
Intensive contamination threshold value (C)	1	5	50	60	60

³ According to Cabinet Regulation No. 118 "Regulations Regarding the Quality of Surface Waters and Groundwaters", Annex 10 contains the following information:

-The level of pollution has exceeded the arithmetic mean of the guide value and the limit value, measures shall be taken in such relevant territory in order to clarify the limits of the pollution area, to assess whether the pollution does not cause risk to human health and the environment, as well to prevent further pollution of groundwaters;

- The level of pollution has exceeded the limit value, then, taking into account the geological, hydro-geological, hydro-dynamic conditions and the load caused by anthropogenic impact on the relevant territory, the necessity and technical availability of environmental remediation without implementation of such measures which could increase the hazard to human health and the environment shall be assessed, as well as it shall be assessed whether the costs for remediation and control measures of polluted groundwaters are not disproportionately high. The level of groundwater treatment shall be determined individually for each polluted area on the basis of the assessment performed. Remediation shall be carried out in accordance with the Law On Pollution and the Environmental Protection Law.

SIA "Vides Konsultāciju Birojs", Ezermalas iela 28, Rīga, LV-1014

Web: http://www.vkb.lv ; E-pasts: birojs@vkb.lv

European Regional Development Fund

objektā Mazuta bāze" Valmierā, Dzelzceļa ielā 9

CONCLUSION

1. Within the time period from September, 2018 until April, 2019, "Vides Konsultāciju Birojs" Ltd, performed soil and groundwater sample collection and laboratory testing (three monitoring stages) at the territory of the Former Heavy Fuel Oil Facilities of *Valmieras Siltums*, Ltd. in Dzelzceļa iela 9, Valmiera, within the current pilot-test polygon and near its vicinity.

ISURE

- 2. During the monitoring works, 92 soil samples and 7 groundwater samples were collected. Soil samples were gathered from cathode and anode electrode boreholes (one time, during system installation), as well from 2 background boreholes and 3 boreholes within the pilot-test polygon (three times during the pilot-test) at 4 different depth intervals. However, groundwater samples were taken from previously installed monitoring wells and from anode borehole No. 2.
- 3. Field observation and laboratory testing results show that contamination is decreasing and also increasing within certain sample groups. Therefore, we can conclude that soil contamination at the object has changed due to the decontamination works performed at the object. Overall, oil product contamination during the pilot-test has decreased by approximately 10% compared to the initial contamination level.
- 4. At the final stage of monitoring, intensive soil contamination outside the pilot-test territory was not detected. Contamination intensity has decreased in samples taken from the territory within the pilot-test (samples taken from location S2 and S3), however, in one of the boreholes the contamination intensity has increased and returned to the initial level.
- 5. Groundwater quality in vicinity of the polygon is considered to be acceptable and appropriate to the situation. Monitoring well No. 11, which is located in the pilot-test polygon, has a floating oil product layer which vary from 5-6 cm in thickness, which shows an intensive groundwater contamination with oil products near the boreholes of cathode row. However, the oil product concentration in samples significantly exceed the contamination threshold value near anode and cathode row of wells, as it was observed before the start of the pilot-test.

Gala pārskats PAR GRUNTS UN GRUNTSŪDENS MONIOTIRNGU

INSURE

Central Baltic

objektā Mazuta bāze" Valmierā, Dzelzceļa ielā 9

ANNEX 1

Plan of extraction site

Site plan Dzelzceļa iela 9, Valmiera

VKB[×] Vides Konsultáciju Birojs

Borehole standardsheme

Borehole catalog

В	BH. No. I	F1	Date 20/09/2018	Sampling	interv	al, m	Groundwater
From	То	thicknes	Geology		from	to	depth, m
0.00	-0.05	0.05	soil	VALM-F-1-1	0.00	1.00	-1.60
				VALM-F-1-2	1.00	2.00	
-0.05	-4.00	3.95	clay/ silt	VALM-F-1-3	2.00	3.00	
				VALM-F-1-4	3.00	4.00	

Site "Former Heavy Fuel Oil Facilities of SIA Valmieras Siltums", unit: Nordmeyer DSB 3.5/1, augering, auger d= 136 mm

E	BH No. F2		Date 20/09/2018	Sampling	interv	al, m	Groundwater
From	То	thicknes	Geology		from	to	depth, m
0.00	-0.10	0.10	soil	VALM-F-2-1	0.00	1.00	-1.50
				VALM-F-2-2	1.00	2.00	
-0.10	-4.00	3.90	clay/ silt	VALM-F-2-3	2.00	3.00	
				VALM-F-2-4	3.00	4.00	

BH No. F2		2	Date 20/09/2018	Sampling	interv	al, m	Groundwater
From	То	thicknes	Geology	Sumpling	from	to	depth, m
0.00	-0.10	0.10	soil	VALM-F-2-1	0.00	1.00	-1.50
				VALM-F-2-2	1.00	2.00	
-0.10	-4.00	3.90	clay/ silt	VALM-F-2-3	2.00	3.00	
				VALM-F-2-4	3.00	4.00	

BH No. K-1		~-1	Date 20/09/2018	Sampling	interv	al, m	Groundwater
From	То	thicknes	Geology	Sumpling	from	to	depth, m
0.00	-0.05	0.05	soil	VALM-K-1-1	0.00	1.00	-1.50
				VALM-K-1-2	1.00	2.00	
-0.05	-4.00	3.95	clay/ silt	VALM-K-1-3	2.00	3.00	
				VALM-K-1-4	3.00	4.00	

BH No. K-2		-2	Date 20/09/2018	Sampling	interv	al, m	Groundwater
From	То	thicknes	Geology	Sumpling	from	to	depth, m
0.00	-0.05	0.05	soil	VALM-K-2-1	0.00	1.00	-1.50
				VALM-K-2-2	1.00	2.00	
-0.05	-4.00	3.95	clay/ silt	VALM-K-2-3	2.00	3.00	
				VALM-K-2-4	3.00	4.00	

В	H No. K	-3	Date 20/09/2018	Sampling	interv	al, m	Groundwater
From	То	thicknes	Geology	Sumpling	from	to	depth, m
0.00	-0.05	0.05	soil	VALM-K-3-1	0.00	1.00	-1.60
				VALM-K-3-2	1.00	2.00	
-0.05	-4.00	3.95	clay/ silt	VALM-K-3-3	2.00	3.00	
				VALM-K-3-4	3.00	4.00	

		·	Data 20/00/2018		int	al m	Croundweter
Erom	το. Κ	-4 thicknoc	Duic 20/03/2010	Sampling	from	to	denth m
0.00	-0.05		soil	VΔI M-K-Λ-1		1 00	-1 50
0.00	-0.03	0.05	SOIL		1.00	2.00	-1.50
0.05	4.00	2 05	clay/ silt		2.00	2.00	
-0.05	-4.00	5.95			2.00	3.00	
				VALIVI-K-4-4	5.00	4.00	
		_1	Data: 21/00/2018		intory	al m	Croundwater
Erom		-1 thicknes	Geology	Sampling	from	to	denth m
0.00	0.05	0.05	soil	VALNA A 1 1	0.00	1 00	1 50
0.00	-0.03	0.05	sond		1.00	2.00	-1.50
-0.05	-0.60	2.40			2.00	2.00	
-0.60	-4.00	3.40	Clay / Silt		2.00	3.00	
				VALIVI-A-1-4	5.00	4.00	
		2	Data: 21/00/2018		intory	al m	Croundwater
Б	<u>н №. А</u>	-z thicknoc	Dale. 21/09/2018	Sampling	from	to	donth m
FI UIII	10		Geology		,1011	1.00	1.CO
0.00	-0.05	0.05		VALIVI-A-2-1	0.00	2.00	-1.60
-0.05	-0.90	0.85		VALIVI-A-2-2	1.00	2.00	
-0.90	-4.00	3.10	clay / silt	VALIVI-A-2-3	2.00	3.00	
				VALIM-A-2-4	3.00	4.00	
<u> </u>					T · ·	1	
В	H NO. A	-3 	Date: 21/09/2018	Sampling	interv	al, m	Groundwater
From	10	thicknes	Geology		from	to	depth, m
0.00	-0.05	0.05	asphalt	VALM-A-3-1	0.00	1.00	-1.60
-0.05	-0.85	0.80	snd	VALM-A-3-2	1.00	2.00	
-0.85	-4.00	3.15	clay / silt	VALM-A-3-3	2.00	3.00	
				VALM-A-3-4	3.00	4.00	
<u> </u>					<u> </u>	1	
В	H NO. A	-4	Date: 21/09/2018	Sampling	interv	al, m	Groundwater
From	10	thicknes	Geology		from	t0	depth, m
0.00	-0.05	0.05	boulders	VALM-A-4-1	0.00	1.00	-1.60
-0.05	-0.85	0.80	sand	VALM-A-4-2	1.00	2.00	
-0.85	-4.00	3.15	clay / silt	VALIM-A-4-3	2.00	3.00	
				VALM-A-4-4	3.00	4.00	
						,	
В	H NO. F	-1	Date: 21/09/2018	Sampling	interv	al, m	Groundwater
From	10	thicknes	Geology		from	to	depth, m
0.00	-0.05	0.05	soil	VALM-F-1-1	0.00	1.00	-1.60
-0.05	0.60	-0.65	sand	VALM-F-1-2	1.00	2.00	
-0.85	-4.00	3.15	clay / silt	VALM-F-1-3	2.00	3.00	
				VALM-F-1-4	3.00	4.00	
				1		,	
B	H No. F	-2	Date: 21/09/2018	Sampling	interv	al, m	Groundwater
From	То	thicknes	Geology	, 3	from	to	depth, m
0.00	-0.05	0.05	soil	VALM-F-2-1	0.00	1.00	-1.55
-0.05	0.60	-0.65	sand	VALM-F-2-2	1.00	2.00	
-0.85	-4.00	3.15	clay / silt	VALM-F-2-3	2.00	3.00	
				VALM-F-2-4	3.00	4.00	
i							
В	H No. F	-3	Date: 21/09/2018	Samplina	interv	al, m	Groundwater
From	То	thicknes	Geology		from	to	depth, m
0.00	-0.05	0.05	soil	VALM-F-3-1	0.00	1.00	-1.60
-0.05	0.75	-0.80	sand	VALM-F-3-2	1.00	2.00	
-0.85	-4.00	3.15	clay / silt	VALM-F-3-3	2.00	3.00	
				1		1 00	

objektā Mazuta bāze" Valmierā, Dzelzceļa ielā 9

ANNEX 2

List of intervals for sample collection and copies of laboratory testing reports

INSURE

Central Baltic

No.	Sampling interval, m from surface	Sample code	No.	Sampling interval, m from surface	Sample code
1	0.0-1.0	VALM-K-1-1	27	2.0-3.0	VALM-A-3-3
2	1.0-2.0	VALM-K-1-2	28	3.0-4.0	VALM-A-3-4
3	2.0-3.0	VALM-K-1-3	29	0.0-1.0	VALM-A-4-1
4	3.0-4.0	VALM-K-1-4	30	1.0-2.0	VALM-A-4-2
5	0.0-1.0	VALM-K-2-1	31	2.0-3.0	VALM-A-4-3
6	1.0-2.0	VALM-K-2-2	32	3.0-4.0	VALM-A-4-4
7	2.0-3.0	VALM-K-2-3	33	0.0-1.0	VALM-F-1-1
8	3.0-4.0	VALM-K-2-4	34	1.0-2.0	VALM-F-1-2
9	0.0-1.0	VALM-K-3-1	35	2.0-3.0	VALM-F-1-3
10	1.0-2.0	VALM-K-3-2	36	3.0-4.0	VALM-F-1-4
11	2.0-3.0	VALM-K-3-3	37	0.0-1.0	VALM-F-2-1
12	3.0-4.0	VALM-K-3-4	38	1.0-2.0	VALM-F-2-2
13	0.0-1.0	VALM-K-4-1	39	2.0-3.0	VALM-F-2-3
14	1.0-2.0	VALM-K-4-2	40	3.0-4.0	VALM-F-2-4
15	2.0-3.0	VALM-K-4-3	41	0.0-1.0	VALM-S-1-1
16	3.0-4.0	VALM-K-4-4	42	1.0-2.0	VALM-S-1-2
17	0.0-1.0	VALM-A-1-1	43	2.0-3.0	VALM-S-1-3
18	1.0-2.0	VALM-A-1-2	44	3.0-4.0	VALM-S-1-4
19	2.0-3.0	VALM-A-1-3	45	0.0-1.0	VALM-S-2-1
20	3.0-4.0	VALM-A-1-4	46	1.0-2.0	VALM-S-2-2
21	0.0-1.0	VALM-A-2-1	47	2.0-3.0	VALM-S-2-3
22	1.0-2.0	VALM-A-2-2	48	3.0-4.0	VALM-S-2-4
23	2.0-3.0	VALM-A-2-3	49	0.0-1.0	VALM-S-3-1
24	3.0-4.0	VALM-A-2-4	50	1.0-2.0	VALM-S-3-2
25	0.0-1.0	VALM-A-3-1	51	2.0-3.0	VALM-S-3-3
26	1.0-2.0	VALM-A-3-2	52	3.0-4.0	VALM-S-3-4

List of intervals for sample collection

Sampling spot and its No	Sampling iinterval (m from surface)	sample code
	0.0-1.0	VALM-F-1-1
F1 (outside testing site)	1.0-2.0	VALM-F-1-2
(2.0-3.0	VALM-F-1-3
	3.0-4.0	VALM-F-1-4
	0.0-1.0	VALM-F-2-1
E2 (outside testing site)	1.0-2.0	VALM-F-2-2
	2.0-3.0	VALM-F-2-3
	3.0-4.0	VALM-F-2-4
	0.0-1.0	VALM-S-1-1
C1 (incide testing site)	1.0-2.0	VALM-S-1-2
ST (Inside testing site)	2.0-3.0	VALM-S-1-3
	3.0-4.0	VALM-S-1-4
	0.0-1.0	VALM-S-2-1
	1.0-2.0	VALM-S-2-2
S2 (inside testing site)	2.0-3.0	VALM-S-2-3
	3.0-4.0	VALM-S-2-4
	0.0-1.0	VALM-S-3-1
	1.0-2.0	VALM-S-3-2
S3 (inside testing site)	2.0-3.0	VALM-S-3-3
	3.0-4.0	VALM-S-3-4

SIA "Vides Konsultāciju Birojs" LABORATORIJA

Rīgā, Ezermalas ielā 28, tālr. 20255171 e-pasts: laboratorija@laboratorija.vkb.lv

TESTÉŠANAS PĀRSKATS Nr. 1714-18 1. lpp. no 8

Pasūtītājs, adrese: SIA "Vides Konsultāciju Birojs", Rīga, Ezermalas iela 28

Objekta šifrs: Paraugu ņemšanas vieta - Valmiera

Paraugus iesniedza: P. Birzgalis iesniegšanas datums: 26.09.2018.

Testējamais materiāls: grunts

Ziņas par paraugiem: PE maiss

Par paraugu ņemšanu atbilstoši standartam atbild paraugu ņēmējs.

Paraugu nēma P. Birzgalis, (...Vides Konsultāciju Birojs") 20. 21.09.2018.

Testēšanas rezultāti

Parauga kods: VALM-K-1-1		Lab.Nr.982 - 1
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C10 līdz C20 (naftas produkti), mg/kg	50	
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	45	LVS EN ISO 16703:2011
Parauga kods: VALM-K-1-2		Lab.Nr.982 - 2
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Oglūdeņraži no C10 līdz C20 (naftas produkti), mg/kg	570	
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	140	LVS EN ISO 16703:2011
arauga kods: VALM-K-1-3		Lab.Nr.982 - 3
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C10 līdz C20 (naftas produkti), mg/kg	3100	
Og ūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	770	- LVS EN ISO 16703:2011
Parauga kods: VALM-K-1-4		Lab.Nr.982 - 4
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Oglūdeņraži no C10 līdz C20 (naftas produkti), mg/kg	560	
Ogļūdeņraži no C20 līdz C40 (naftas produkti), mg/kg	160	- LVS EN ISO 16703:2011
Parauga kods: VALM-K-2-1		Lab.Nr.982 - 5
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C10 līdz C20 (naftas produkti), mg/kg	250	
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	140	LVS EN ISO 16703:2011
Parauga kods: VALM-K-2-2		Lab.Nr.982 - 6
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C10 līdz C20 (naftas produkti), mg/kg	3100	
Oglūdeņraži no C20 līdz C40	750	LVS EN ISO 16703:2011

Testēšanas rezultāti attiecas uz konkrēto testēšanas paraugu. Testēšanas pārskata reproducēšana nepilnā apjomā nav atļauta.

(naftas produkti), mg/kg

SIA "Vides Konsultāciju Birojs" LABORATORIJA Rīgā, Ezermalas ielā 28, tālr. 20255171 e-pasts: laboratorija@laboratorija.vkb.lv

TESTÉŠANAS PĀRSKATS Nr. 1714-18 2. lpp. no 8

Pasütītājs, adrese: SIA "Vides Konsultāciju Birojs", Rīga, Ezermalas iela 28

Objekta šifrs: Paraugu nemšanas vieta - Valmiera

Parauga kods: VALM-K-2-3		Lab.Nr. <u>982 - 7</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode	
Oglūdeņraži no C10 līdz C20 6200		LVS EN ISO 16702-2011	
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	1300	LVS EN 150 16705:2011	

Parauga kods: VALM-K-2-4		Lab.Nr. <u>982 – 8</u>		
Testēšanas rādītājs	Rezultāts	Testēšanas metode		
Ogļūdeņraži no C10 līdz C20 1200		LVS EN ISO 16702-2011		
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	150	LVS EN 130 16/05:2011		

Parauga kods: VALM-K-3-1		Lab.Nr. <u>982 – 9</u>		
Testēšanas rādītājs	Rezultāts	Testēšanas metode		
Ogļūdeņraži no C10 līdz C20 65		LVC EN ISO 16702-2011		
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	34	LVS EN ISO 16705.2011		

Parauga kods: VALM-K-3-2		Lab.Nr. <u>982 - 10</u>		
Testēšanas rādītājs	Rezultāts	Testēšanas metode		
Oglūdeņraži no C ₁₀ līdz C ₂₀ (naftas produkti), mg/kg 4500		LVS EN 180 16703-2011		
Ogļūdeņraži no C20 līdz C40 (naftas produkti), mg/kg	540	Lab.INI. <u>982 – 10</u> Testēšanas metode LVS EN ISO 16703:2011		

Parauga kods: VALM-K-3-3		Lab.Nr. <u>982 – 11</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode	
Ogļūdeņraži no C10 līdz C20 (naftas produkti), mg/kg		LVS EN 180 16702-2011	
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	350	LVS EN 130 16703:2011	

Parauga kods: VALM-K-3-4		Lab.Nr. <u>982 - 12</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode	
Ogļūdeņraži no C ₁₀ līdz C ₂₀ 570 (naftas produkti), mg/kg		L VS EN ISO 16702-2011	
Oglūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	90	LVS EN 150 10705.2011	

Parauga kods: VALM-K-4-1		Lab.Nr. <u>982 – 13</u>		
Testēšanas rādītājs	Rezultāts	Testēšanas metode		
Ogļūdeņraži no C10 līdz C20 (naftas produkti), mg/kg	84	LVS EN ISO 16702-2011		
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	37	LVS EN 150 10705.2011		

Testēšanas rezultāti attiecas uz konkrēto testēšanas paraugu. Testēšanas pārskata reproducēšana nepilnā apjomā nav atļauta.
TESTÉŠANAS PĀRSKATS Nr. 1714-18 3. lpp. no 8

Pasütītājs, adrese: SIA "Vides Konsultāciju Birojs", Rīga, Ezermalas iela 28

Objekta šifrs: Paraugu ņemšanas vieta - Valmiera

arauga kods: VALM-K-4-2		Lab.Nr. <u>982 - 14</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode	
Ogļūdeņraži no C10 līdz C20 (naftas produkti), mg/kg	2700	LVS EN ISO 16703:2011	
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	480		
arauga kods: VALM-K-4-3		Lab.Nr. <u>982 - 15</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode	
Ogļūdeņraži no C ₁₀ līdz C ₂₀ (naftas produkti), mg/kg	2700	LVS EN ISO 16702-2011	
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	440		
arauga kods: VALM-K-4-4		Lab.Nr. <u>982 - 16</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode	
Ogļūdeņraži no C10 līdz C20 (naftas produkti), mg/kg	160	LVS EN ISO 16703-2011	
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	32	LVS EN ISO 16703:2011	
Parauga kods: VALM-A-1-1		Lab.Nr. <u>982 - 17</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode	
Oglūdeņraži no C10 līdz C20 (naftas produkti), mg/kg	< 2,6		
Og ūdeņraži no C20 līdz C40 (naftas produkti), mg/kg	< 2,6	LVS EN ISO 16703:201	
Parauga kods: VALM-A-1-2		Lab.Nr.982 - 18	
Testēšanas rādītājs	Rezultāts	Testēšanas metode	
Ogļūdeņraži no C10 līdz C20 (naftas produkti), mg/kg	36	LVS EN ISO 16703:2011	
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	5,2		
Parauga kods: VALM-A-1-3		Lab.Nr.982-19	
Testēšanas rādītājs	Rezultāts	Testēšanas metode	
Ogļūdeņraži no C10 līdz C20 (naftas produkti), mg/kg	31		
Oglūdeņraži no C20 līdz C40 (naftas produkti), mg/kg	3,4	LVS EN ISO 16703:201	
Parauga kods: VALM-A-1-4		Lab.Nr.982 - 20	
Testēšanas rādītājs	Rezultāts	Testēšanas metode	
Oglūdeņraži no C10 līdz C20 (naftas produkti), mg/kg	20		
Ogļūdeņraži no C20 līdz C40	4,4	LVS EN ISO 16703:201	

SIA "Vides Konsultāciju Birojs" LABORATORIJA

Rīgā, Ezermalas ielā 28, tālr. 20255171 e-pasts: laboratorija@laboratorija.vkb.lv

TESTĒŠANAS PĀRSKATS Nr. 1714-18 4. lpp. no 8

Pasūtītājs, adrese: SIA "Vides Konsultāciju Birojs", Rīga, Ezermalas iela 28

Objekta šifrs: Paraugu nemšanas vieta - Valmiera

Parauga kods: VALM-A-2-1		Lab.Nr. <u>982 - 21</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode	
Oglūdeņraži no C10 līdz C29 (naftas produkti), mg/kg	21	1.100 EN 1000 10000 2011	
Ogļūdeņraži no C20 līdz C40 (naftas produkti), mg/kg	3,5	LVS EN ISO 16703:2011	

Parauga kods: VALM-A-2-2		Lab.Nr. <u>982 - 22</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode	
Ogļūdeņraži no C10 līdz C20 (naftas produkti), mg/kg	29	LVC EN ICO 1/702 2011	
Ogļūdeņraži no C20 līdz C40 (naftas produkti), mg/kg	8,9	LVS EN ISO 16703:2011	

Parauga kods: VALM-A-2-3		Lab.Nr. <u>982 – 23</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode	
Ogļūdeņraži no C10 līdz C20 (naftas produkti), mg/kg	30	LVC EN ISO 16703-2011	
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	6,5	LVS EN ISO 16703:2011	

Parauga kods: VALM-A-2-4		Lab.Nr. <u>982 - 24</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode	
Oglūdeņraži no C10 līdz C20 (naftas produkti), mg/kg	< 2,6	LVC DV ICO 1/202 2011	
Oglūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	< 2,6	LVS EN ISO 16703:2011	

Parauga kods: VALM-A-3-1	Lab.Nr. <u>982 – 25</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Oglūdeņraži no C10 līdz C20 (naftas produkti), mg/kg	29	LVC EN 160 1/202-2011
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	5,4	LVS EN ISO 16703:2011

Parauga kods: VALM-A-3-2	Lab.Nr. <u>982 – 26</u>		
Testēšanas rādītājs	Rezultāts	Testēšanas metode	
Ogļūdeņraži no C10 līdz C20 (naftas produkti), mg/kg	22	LVC EN ICO 1/201 2011	
Ogļūdeņraži no C20 līdz C40 (naftas produkti), mg/kg	3,9	LVS EN ISO 16703:2011	

Parauga	kods:	VALM	-A-3-3
COLUMN TWO IS NOT THE OWNER.			

Parauga kods: VALM-A-3-3		Lab.Nr. <u>982 - 27</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode	
Ogļūdeņraži no C10 līdz C20 (naftas produkti), mg/kg	27	LVS EN ISO 16702-2011	
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	3,8	LVS EN ISO 16703:2011	

TESTÉŠANAS PĀRSKATS Nr. 1714-18 5. lpp. no 8

Pasūtītājs, adrese: SIA "Vides Konsultāciju Birojs", Rīga, Ezermalas iela 28

Objekta šifrs: Paraugu nemšanas vieta - Valmiera

Parauga kods: VALM-A-3-4		Lab.Nr. <u>982 - 28</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode	
Ogļūdeņraži no C10 līdz C20 (naftas produkti), mg/kg	61	LVS EN ISO 16703:2011	
Oglūdeņraži no C20 līdz C40 (naftas produkti), mg/kg	10		
arauga kods: VALM-A-4-1		Lab.Nr. <u>982 - 29</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode	
Ogļūdeņraži no C10 līdz C20 (naftas produkti), mg/kg	36	LUC EN ICO LOTOS SOLI	
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	15	LV3 EN 130 16703.2011	
arauga kods: VALM-A-4-2		Lab.Nr. <u>982 - 30</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode	
Ogļūdeņraži no C10 līdz C20 (naftas produkti), mg/kg	32	LVS EN ISO 16702-2011	
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	11	LVS EN ISO 16703:2011	
arauga kods: VALM-A-4-3		Lab.Nr. <u>982 - 31</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode	
Oglūdeņraži no C10 līdz C20 (naftas produkti), mg/kg	28		
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	10	LVS EN ISO 16703:2011	
Parauga kods: VALM-A-4-4		Lab.Nr.982 - 32	
Testēšanas rādītājs Rezultāts		Testēšanas metode	
Ogļūdeņraži no C10 līdz C20 (naftas produkti), mg/kg	23	LVS EN ISO 16703:2011	
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	7,8		
Parauga kods: VALM-F-1-1		Lab.Nr.982 - 33	
Testēšanas rādītājs	Rezultāts	Testēšanas metode	
Ogļūdeņraži no C10 līdz C20 (naftas produkti), mg/kg	100	LVS EN ISO 16703:2011	
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	61		
arauga kods: VALM-F-1-2		Lab.Nr.982 - 34	
Testēšanas rādītājs	Rezultāts	Testēšanas metode	
Oglūdeņraži no C10 līdz C20 (naftas produkti), mg/kg	1200		
Oglūdeņraži no C20 līdz C40 (naftas produkti), mg/kg	300	LVS EN ISO 16703:2011	

SIA "Vides Konsultāciju Birojs" LABORATORIJA Rīgā, Ezermalas ielā 28, tālr. 20255171

e-pasts: laboratorija@laboratorija.vkb.lv

TESTÊŠANAS PÄRSKATS Nr. 1714-18 6. lpp. no 8

Pasütitäjs, adrese: SIA "Vides Konsultāciju Birojs", Rīga, Ezermalas iela 28

Objekta šifrs: Paraugu nemšanas vieta - Valmiera

Parauga kods: VALM-F-1-3		Lab.Nr. <u>982 - 35</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode	
Ogļūdeņraži no C10 līdz C20 (naftas produkti), mg/kg	710	1.1/2 EX120.17202-2011	
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	190	LVS EN ISO 16703:2011	

Parauga kods: VALM-F-1-4	Lab.Nr. <u>982 – 36</u>		
Testēšanas rādītājs	Rezultāts	Testēšanas metode	
Ogļūdeņraži no C10 līdz C20 (naftas produkti), mg/kg	68		
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	36	LVS EN ISO 16703:2011	

Parauga kods: VALM-F-2-1	Lab.Nr. <u>982 – 37</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C10 līdz C20 (naftas produkti), mg/kg	37	LVE EN ISO 1(702-2011
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	31	LVS EN ISO 16703:2011

Parauga kods: VALM-F-2-2	Lab.Nr. <u>982 - 38</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C10 līdz C20 (naftas produkti), mg/kg	48	
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	16	LVS EN ISO 16/03:2011

Parauga kods: VALM-F-2-3	Lab.Nr. <u>982 – 39</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Oglūdeņraži no C10 līdz C20 (naftas produkti), mg/kg	44	13/2 53/12/2022001
Oglūdeņraži no C20 līdz C40 (naftas produkti), mg/kg	11	LVS EN ISO 16703:2011

Parauga kods: VALM-F-2-4	Lab.Nr. <u>982 - 40</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C10 līdz C20 (naftas produkti), mg/kg	12	LVC EN ICO 1/202 2011
Oglūdeņraži no C20 līdz C40 (naftas produkti), mg/kg	9	LVS EN 150 16703:2011

Parauga kods: VALM-S-1-1	Lab.Nr. <u>982 - 41</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C10 līdz C20 (naftas produkti), mg/kg	19	LVC EN ISO 1/702 2011
Oglūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	5,2	LVS EN 150 16703:2011

TESTĒŠANAS PĀRSKATS Nr. 1714-18 7. lpp. no 8

Pasütītājs, adrese: SIA "Vides Konsultāciju Birojs", Rīga, Ezermalas iela 28

Objekta šifrs: Paraugu nemšanas vieta - Valmiera

Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C10 līdz C20 (naftas produkti), mg/kg	1000	
Ogļūdeņraži no C20 līdz C40 (naftas produkti), mg/kg	210	LVS EN ISO 16703:2011
Parauga kods: VALM-S-1-3		Lab.Nr.982 - 43
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C10 līdz C20 (naftas produkti), mg/kg	1600	LVS EN ISO 16703:2011
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	240	
Parauga kods: VALM-S-1-4		Lab.Nr.982 - 44
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C10 līdz C20 (naftas produkti), mg/kg	54	LVS EN ISO 16703:201
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	7,4	
Parauga kods: VALM-S-2-1		Lab.Nr.982 - 45
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C10 līdz C20 (naftas produkti), mg/kg	29	LVS EN ISO 16703:201
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	23	
Parauga kods: VALM-S-2-2		Lab.Nr.982 - 46
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C10 līdz C20 (naftas produkti), mg/kg	180	LVS EN ISO 16703:201
Ogļūdeņraži no C20 līdz C40 (naftas produkti), mg/kg	50	

Parauga kods: VALM-S-2-3	Lab.Nr. <u>982 – 47</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C10 līdz C20 (naftas produkti), mg/kg	46	
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	5,4	LVS EN ISO 16703:2011

Parauga kods: VALM-S-2-4

Parauga kods: VALM-S-2-4	Lab.Nr. <u>982 – 48</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C10 līdz C20 (naftas produkti), mg/kg	15	
Ogļūdeņraži no C20 līdz C40 (naftas produkti), mg/kg	< 2,6	LVS EN ISO 16703:2011

TESTÉŠANAS PÄRSKATS Nr. 1714-18 8. lpp. no 8

Pasūtītājs, adrese: SIA "Vides Konsultāciju Birojs", Rīga, Ezermalas iela 28

Objekta šifrs: Paraugu nemšanas vieta - Valmiera

Parauga kods: VALM-S-3-1	Lab.Nr. <u>982 - 49</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C10 līdz C20 (naftas produkti), mg/kg	19	LVS EN ISO 16703:2011
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	3,3	

Parauga kods: VALM-S-3-2	Lab.Nr. <u>982 - 50</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C10 līdz C20 (naftas produkti), mg/kg	1900	LVC EX180 17202 2011
Ogļūdeņraži no C20 līdz C40 (naftas produkti), mg/kg	610	LVS EN ISO 16703.2011

Parauga kods: VALM-S-3-3	Lab.Nr. <u>982 – 51</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogłūdeņraži no C10 līdz C20 (naftas produkti), mg/kg	420	LVC EN ISO 16702-2011
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	110	LVS EN ISO 16/03:2011

Parauga kods: VALM-S-3-4	Lab.Nr. <u>982 - 52</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C10 līdz C20 (naftas produkti), mg/kg	52	LVE EN ISO 16703-2011
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	16	LVS EN 150 16705:2011

Testēšana veikta: no 03.12.18. līdz 10.12.18.

Testēšanu veica: 1. Fogele

Datums: 11.12.2018.

Laboratorijas vadītāja:

SIA "Vides Konsultāciju Birojs" LABORATORIJA Rīgā, Ezermalas ielā 28, tālr. 20255171

e-pasts: laboratorija@laboratorija.vkb.lv

TESTÉŠANAS PĀRSKATS Nr. 1715-18

Pasūtītājs, adrese: SIA "Vides Konsultāciju Birojs", Rīgā, Ezermalas ielā 28

Objekta šifrs: Paraugu nemšanas vieta - Valmiera

Paraugus iesniedza: A. Roze iesniegšanas datums: 26.09.2018.

Testējamais materiāls: gruntsūdens

Ziņas par paraugiem: tilpums, tara: 0.5 L polietilēna un 1 L stikla pudeles

Par paraugu ņemšanu atbilstoši standartam atbild paraugu ņēmējs.

Paraugus nēma P. Birzgalis ("Vides Konsultāciju Birojs") 21.09.2018.

Testēšanas rezultāti

Parauga	kode.	VALM-CU-5	Lab Nr 972 - 1
rarauga	KUUS:	VALM-GU-5	1.30.141.972 - 1

Testēšanas rādītājs	Rezultāts ± nenoteiktība*	Testēšanas metode
Oglūdeņraži no C10 līdz C20 (naftas produkti), mg/L	<0,072	LVS EN ISO 9377-2:2011
Ogļūdeņraži no C20 līdz C40 (naftas produkti), mg/L	<0,072	LVS EN ISO 9377-2:2011
Ogļūdeņraži no C10 līdz C40 (naftas produkti), mg/L	<0,072	LVS EN ISO 9377-2:2011
Kopējais slāpeklis, mg/L	$0,85 \pm 0,10$	LVS EN ISO 11905-1:1998
Vides reakcija, pH vien.	6,31±0,6	LVS EN ISO 10523:2012

Parauga kods: U9P2 Lab.Nr.972 - 2

Testēšanas rādītājs	Rezultāts ± nenoteiktība*	Testēšanas metode
Ogļūdeņraži no C10 līdz C20 (naftas produkti), mg/L	<0,072	LVS EN ISO 9377-2:2011
Oglūdeņraži no C20 līdz C40 (naftas produkti), mg/L	<0,072	LVS EN ISO 9377-2:2011
Oglūdeņraži no C10 līdz C40 (naftas produkti), mg/L	<0,072	LVS EN ISO 9377-2:2011
Kopējais slāpeklis, mg/L	$6,3 \pm 0,5$	LVS EN ISO 11905-1:1998
Vides reakcija, pH vien.	6,95±0,7	LVS EN ISO 10523:2012

Parauga kods: U10P3 Lab.Nr.972 - 3

Testēšanas rādītājs	Rezultāts ± nenoteiktība*	Testēšanas metode
Oglūdeņraži no C10 līdz C20 (naftas produkti), mg/L	<0,072	LVS EN ISO 9377-2:2011
Ogļūdeņraži no C20 līdz C40 (naftas produkti), mg/L	<0,072	LVS EN ISO 9377-2:2011
Oglūdeņraži no C10 līdz C40 (naftas produkti), mg/L	<0,072	LVS EN ISO 9377-2:2011
Kopējais slāpeklis, mg/L	11,1±1,0	LVS EN ISO 11905-1:1998
Vides reakcija, pH vien.	6,54±0,7	LVS EN ISO 10523:2012

Piezīme:

* Uzrādītā nenoteiktība ir paplašinātā standartnenoteiktība, kas aprēķināta, izmantojot pārklāšanās koeficientu 2,

kurš nodrošina 95% ticamības līmeni. Standartnenoteiktība tiek aprēķināta saskaņā ar LATAK – EA – 4/02 3.izd.

** Testēšanas rezultāts atrodas diapazonā no MDL līdz QL. Šajā darba diapazonā paplašinātā nenoteiktība ir 50%.

Testēšana veikta: no 26.09.18. līdz 28.06.18.

Testēšanu veica: I. Fogele

Datums: 30.09.2018.

Laboratorijas vadītāja:

I.Fogele

SIA "Vides Konsultāciju Birojs" LABORATORIJA

Rīgā, Ezermalas ielā 28, tālr. 20255171 e-pasts: laboratorija@laboratorija.vkb.lv

TESTĒŠANAS PĀRSKATS Nr. 34-19 1. lpp. no 4

Pasūtītājs, adrese: SIA "Vides Konsultāciju Birojs", Rīga, Ezermalas iela 28

Objekta šifrs: Paraugu ņemšanas vieta – Valmiera

Paraugus iesniedza: <u>M. Burkāns</u> iesniegšanas datums: <u>16.01.2019</u>.

Testējamais materiāls: grunts

Ziņas par paraugiem: PE maiss

Par paraugu ņemšanu atbilstoši standartam atbild paraugu ņēmējs.

Paraugu ņēma: P. Birzgalis, M. Burkāns ("Vides Konsultāciju Birojs") 15. 01.2019.

Testēšanas rezultāti

Parauga kods: VALM-F-1-1	Lab.Nr. <u>19 – 3</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C ₁₀ līdz C ₂₀ (naftas produkti), mg/kg	13	LVS EN ISO 16703-2011
Ogļūdeņraži no C_{20} līdz C_{40} (naftas produkti), mg/kg	< 2,6	LV3 EN 130 10703.2011

Parauga kods: VALM-F-1-2	Lab.Nr. <u>19 – 4</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C ₁₀ līdz C ₂₀ (naftas produkti), mg/kg	1800	LVS EN ISO 16702-2011
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	300	LVS EN 180 10703.2011

Parauga kods: VALM-F-1-3		Lab.Nr. <u>19 – 5</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode	
Ogļūdeņraži no C ₁₀ līdz C ₂₀ (naftas produkti), mg/kg	18	LVS EN ISO 16702-2011	
Ogļūdeņraži no C_{20} līdz C_{40} (naftas produkti), mg/kg	14	LVS EN 150 10705.2011	

Parauga kods: VALM-F-1-4	Lab.Nr. <u>19 – 6</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C ₁₀ līdz C ₂₀ (naftas produkti), mg/kg	140	LVS EN ISO 16703-2011
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	40	LVS EN ISO 10705.2011

Parauga kods: VALM-F-2-1	Lab.Nr. <u>19–7</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C ₁₀ līdz C ₂₀ (naftas produkti), mg/kg	150	LVS EN ISO 16703-2011
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	45	LV3 EN 130 10703.2011

TESTĒŠANAS PĀRSKATS Nr. 34-19 2. lpp. no 4

Pasūtītājs, adrese: SIA "Vides Konsultāciju Birojs", Rīga, Ezermalas iela 28

Objekta šifrs: Paraugu ņemšanas vieta – Valmiera

Parauga kods: VALM-F-2-2		Lab.Nr. <u>19 – 8</u>
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C_{10} līdz C_{20} (naftas produkti), mg/kg	6,0**	LVC EN 100 16702-2011
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	< 2,6	LVS EN ISO 16703:2011
Parauga kods: VALM-F-2-3		Lab.Nr. <u>19 – 9</u>
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C ₁₀ līdz C ₂₀ (naftas produkti), mg/kg	5,7**	L VS EN ISO 16703-2011
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	< 2,6	EV3 EN 150 10705.2011
Parauga kods: VALM-F-2-4		Lab.Nr. <u>19 – 10</u>
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C ₁₀ līdz C ₂₀ (naftas produkti), mg/kg	6,1**	L VS EN ISO 16703-2011
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	< 2,6	EV3 EN 150 10705.2011
Parauga kods: VALM-S-1-1		Lab.Nr. <u>19 – 11</u>
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C ₁₀ līdz C ₂₀ (naftas produkti), mg/kg	49	LVS EN ISO 16703-2011
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	19	EV3 EN 150 10703.2011
Parauga kods: VALM-S-1-2		Lab.Nr. <u>19 – 12</u>
Testēšanas rādītājs	Rezultāts	Testēšanas metode
$\begin{array}{c} Og \bar{u} de \eta ra \check{z} i \text{ no } C_{10} \bar{u} dz C_{20} \\ (naftas \text{ produkti}), mg/kg \end{array}$	14	LVS EN ISO 16703-2011
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	8,0**	EV3 EN 150 10703.2011
Parauga kods: VALM-S-1-3		Lab.Nr. <u>19–13</u>
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C ₁₀ līdz C ₂₀ (naftas produkti), mg/kg	520	LVC EN ISO 16702-2011
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	70	LVS EN ISO 16703:2011
Parauga kods: VALM-S-1-4		Lab.Nr. <u>19–14</u>
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C ₁₀ līdz C ₂₀ (naftas produkti), mg/kg	71	LVS EN ISO 16703-2011
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	10	L V 5 EN 150 10705.2011

TESTÉŠANAS PÄRSKATS Nr. 34-19 3. lpp. no 4

Pasõtītājs, adrese: SIA "Vides Konsultāciju Birojs", Rīga, Ezermalas iela 28

Objekta šifrs: Paraugu nemšanas vieta - Valmiera

Parauga kods: VALM-S-2-1		Lab.Nr. <u>19-15</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode	
Ogļūdeņraži no C10 līdz C20 (naftas produkti), mg/kg	5,0**	LVS EN ISO 16703:2011	
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	< 2,6	EV3 EN 130 10703.2011	
Parauga kods: VALM-S-2-2		Lab.Nr. <u>19-16</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode	
Oglūdeņraži no C10 līdz C20 (naftas produkti), mg/kg	590	LVS EN ISO 16703-2011	
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	54		
Parauga kods: VALM-S-2-3		Lab.Nr. <u>19 – 17</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode	
Ogļūdeņraži no C10 līdz C20 (naftas produkti), mg/kg	13	LVS EN 180 16703-2011	
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	8	210 211 30 10103 2011	
Parauga kods: VALM-S-2-4		Lab.Nr. <u>19 – 18</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode	
Ogļūdeņraži no C10 līdz C20 (naftas produkti), mg/kg	43	LVS EN ISO 16703-2011	
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti) , mg/kg	11	1.75 EN 150 10703.2011	
Parauga kods: VALM-S-3-1		Lab.Nr.19-19	
Testēšanas rādītājs	Rezultāts	Testēšanas metode	
Ogļūdeņraži no C10 līdz C20 (naftas produkti), mg/kg	12	LVS EN ISO 16703-2011	
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	< 2,6	EV3 EN 150 10703.2011	
Parauga kods: VALM-S-3-2		Lab.Nr.19 - 20	
Testēšanas rādītājs	Rezultāts	Testēšanas metode	
Ogļūdeņraži no C10 līdz C20 (naftas produkti), mg/kg	23	LVC EN 160 16702-2011	
Ogļūdeņraži no C20 līdz C40 (naftas produkti), mg/kg	3,0**	LVS EN ISO 16/03:2011	
Parauga kods: VALM-S-3-3		Lab.Nr.19 - 21	
Testēšanas rādītāis	Rezultāts	Testēšanas metode	
Oglūdeņraži no C10 līdz C20 (naftas produkti), mg/kg	950		
Ogļūdeņraži no C20 līdz C40 (naftas produkti), mg/kg	120	LVS EN ISO 16703:2011	

TESTĒŠANAS PĀRSKATS Nr. 34-19 4. lpp. no 4

Pasūtītājs, adrese: SIA "Vides Konsultāciju Birojs", Rīga, Ezermalas iela 28

Objekta šifrs: Paraugu ņemšanas vieta - Valmiera

Parauga kods: VALM-S-3-4		Lab.Nr. <u>19 – 22</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode	
Ogļūdeņraži no C10 līdz C20 (naftas produkti), mg/kg	1300	LVC EN ICO 16702-2011	
Oglūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	140	LVS EN ISO 16703:2011	

Testēšana veikta: no 16.01.19. līdz 12.03.19.

Datums: 12.03.2019.

Testëšanu veica: <u>L. Fogele</u> Laboratorijas vadītāja: <u>Jone L.Fogele</u> VKB Video Komutucija Been LABORATORIJA

SIA "Vides Konsultāciju Birojs" LABORATORIJA

Rīgā, Ezermalas ielā 28, tālr. 20255171 e-pasts: laboratorija@laboratorija.vkb.lv

TESTĒŠANAS PĀRSKATS Nr. 66-19

Pasütītājs, adrese: SIA "Vides Konsultāciju Birojs", Rīgā, Ezermalas ielā 28

Objekta šifrs: Paraugu nemšanas vieta - Valmiera

Paraugus iesniedza: M.Burkāns iesniegšanas datums: 16.01.2019.

Testējamais materiāls: gruntsūdens

Ziņas par paraugiem: tilpums, tara: 40 mL stikla pudeles ar PTEF oderētu vāciņu un 1 L stikla pudeles

Par paraugu ņemšanu atbilstoši standartam atbild paraugu ņēmējs.

Paraugu ņēma: P. Birzgalis, M.Burkāns ("Vides Konsultāciju Birojs") 15.01.2019.

Testēšanas rezultāti

Parauga kods: VALM-GŪ-U11 Lab.Nr.19-1

Testēšanas rādītājs	Rezultāts ± nenoteiktība*	Testēšanas metode
Benzols, µg/L	610 ± 90	
Toluols, µg/L	980 ± 130	ISO 11423-1:1997
Etilbenzols, µg/L	450 ± 60	
p-Ksilols, µg/L	900 ± 140	
m-Ksilols, µg/L	1000 ± 140	
o-Ksilols, µg/L	250 ± 30	
Naftas produktu ogļūdeņražu indekss, mg/L	1800 ± 500	LVS EN ISO 9377-2:2001

Parauga kods: VALM-S-GŪ-2 Lab.Nr.19-2

Testēšanas rādītājs	Rezultāts ± nenoteiktība*	Testēšanas metode
Benzols, µg/L	< 0,25	
Toluols, µg/L	< 0,25	
Etilbenzols, µg/L	< 0,25	ISO 11423-1:1997
p-Ksilols, µg/L	< 0,25	
m-Ksilols, µg/L	< 0,25	
o-Ksilols, µg/L	< 0,50	
Naftas produktu ogļūdeņražu indekss, mg/L	1,5 ± 0,3	LVS EN ISO 9377-2:2001

Piezīme:

Uzrādītā nenoteiktība ir paplašinātā standartnenoteiktība, kas aprēķināta, izmantojot pārklāšanās koeficientu 2,

kurš nodrošina 95% ticamības līmeni. Standartnenoteiktība tiek aprēķināta saskaņā ar LATAK - EA - 4/02 3.izd.

** Testēšanas rezultāts atrodas diapazonā no MDL līdz QL. Šajā darba diapazonā paplašinātā nenoteiktība ir 50%.

Testēšana veikta: no 16.01.19. līdz 20.02.19.

Testēšanu veica: I. Fogele

Datums: 12.03.2019.

Laboratorijas vadītāja:

SIA "Vides Konsultāciju Birojs" LABORATORIJA Rīgā, Ezermalas ielā 28, tālr. 20255171

e-pasts: laboratorija@laboratorija.vkb.lv

TESTĒŠANAS PĀRSKATS Nr. 351-19 1. lpp. no 4

Pasūtītājs, adrese: SIA "Vides Konsultāciju Birojs", Rīga, Ezermalas iela 28

Objekta šifrs: Paraugu nemšanas vieta - Valmiera

Paraugus iesniedza: M. Burkāns iesniegšanas datums: 26.04.2019.

Testējamais materiāls: grunts

Ziņas par paraugiem: PE maiss

Par paraugu ņemšanu atbilstoši standartam atbild paraugu ņēmējs.

Paraugu ņēma: P. Birzgalis, M. Burkāns ("Vides Konsultāciju Birojs") 24.04.2019.

Testēšanas rezultāti

Parauga kods: VALM-F-1-1		Lab.Nr. <u>215 – 3</u>
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C ₁₀ līdz C ₂₀ (naftas produkti), mg/kg	22	
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	25	LVS EN ISO 16703:2011

Parauga kods: VALM-F-1-2

Parauga kods: VALM-F-1-2	Lab.Nr. <u>215 – 4</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C ₁₀ līdz C ₂₀ (naftas produkti), mg/kg	95	LVC EN 160 17702 2011
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	27	LVS EN ISO 16703:2011

Parauga kods: VALM-F-1-3

Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C ₁₀ līdz C ₂₀ (naftas produkti), mg/kg	130	
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	60	LV5 EN 150 16703:2011

Lab.Nr.215 - 5

Parauga kods: VALM-F-1-4

Parauga kods: VALM-F-1-4	Lab.Nr. <u>215 – 6</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C ₁₀ līdz C ₂₀ (naftas produkti), mg/kg	55	
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	28	LVS EN ISO 16703:2011

Parauga kods: VALM-F-2-1

Parauga kods: VALM-F-2-1	Lab.Nr. <u>215–7</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C ₁₀ līdz C ₂₀ (naftas produkti), mg/kg	26	
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	30	LVS EN ISO 16703:2011

TESTĒŠANAS PĀRSKATS Nr. 351-19 2. lpp. no 4

Pasūtītājs, adrese: SIA "Vides Konsultāciju Birojs", Rīga, Ezermalas iela 28

Objekta šifrs: Paraugu ņemšanas vieta – Valmiera

<u>Parauga kods: VALM-F-2-2</u>		Lab.Nr. <u>19 – 8</u>
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C10 līdz C20	8.0	
(naftas produkti), mg/kg		LVS EN ISO 16703:2011
Ogļudeņraži no C_{20} līdz C_{40}	4,0	
(nartas produkti), mg/kg		
Parauga kods: VALM-F-2-3		Lab.Nr. <u>19 – 9</u>
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C10 līdz C20	4.0	
(naftas produkti), mg/kg	4,0	LVS EN ISO 16703:2011
Ogļūdeņraži no C_{20} līdz C_{40}	< 2,6	
(nartas produkti), mg/kg		
Parauga kods: VALM-F-2-4		Lab.Nr. <u>19 – 10</u>
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C10 līdz C20	8.0	
(naftas produkti), mg/kg	0,0	LVS EN ISO 16703:2011
Ogļūdeņraži no C_{20} līdz C_{40}	< 2,6	
(hartas produkti), mg/kg		
Parauga kods: VALM-S-1-1		Lab.Nr. <u>19 – 11</u>
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C10 līdz C20	10	
(naftas produkti), mg/kg	10	LVS EN ISO 16703:2011
Ogļūdeņraži no C_{20} līdz C_{40}	5,0	
(nartas produkti), mg/kg		
Parauga kods: VALM-S-1-2		Lab.Nr. <u>19 – 12</u>
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C ₁₀ līdz C ₂₀	1400	
(naftas produkti), mg/kg	1400	LVS FN ISO 16703:2011
Ogļūdeņraži no C_{20} līdz C_{40}	190	L (5 L (16 6 10 / 05 20 11
(haftas produkti), mg/kg		
Parauga kods: VALM-S-1-3		Lab.Nr. <u>19–13</u>
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C ₁₀ līdz C ₂₀	1400	
(naftas produkti), mg/kg	1400	L VS EN ISO 16703-2011
Ogļūdeņraži no C ₂₀ līdz C ₄₀	130	LVS EN ISO 10703:2011
(naftas produkti), mg/kg	150	
Parauga kods: VALM-S-1-4		Lab.Nr. <u>19–14</u>
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Oglūdeņraži no C ₁₀ līdz C ₂₀	<u> </u>	
(naftas produkti), mg/kg	23	LVS EN 160 16702-2011
Ogļūdeņraži no C ₂₀ līdz C ₄₀	4.0	LV5 EN 150 10/03:2011
(naftas produkti), mg/kg	7,0	

SIA "Vides Konsultāciju Birojs" LABORATORIJA Rīgā, Ezermalas ielā 28, tālr. 20255171

e-pasts: laboratorija@laboratorija.vkb.lv

TESTĒŠANAS PĀRSKATS Nr. 351-19 3. lpp. no 4

Pasūtītājs, adrese: SIA "Vides Konsultāciju Birojs", Rīga, Ezermalas iela 28

Objekta šifrs: Paraugu nemšanas vieta – Valmiera

Parauga kods: VALM-S-2-1		Lab.Nr. <u>19 – 15</u>
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C ₁₀ līdz C ₂₀ (naftas produkti), mg/kg	18	
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	69	LVS EN ISO 16703:2011

Parauga kods: VALM-S-2-2	Lab.Nr. <u>19 – 16</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C ₁₀ līdz C ₂₀ (naftas produkti), mg/kg	9	
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	15	LVS EN 150 16703:2011

Parauga kods: VALM-S-2-3	Lab.Nr. <u>19 – 17</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C ₁₀ līdz C ₂₀ (naftas produkti), mg/kg	290	
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	28	LVS EN 180 16703:2011

Parauga kods: VALM-S-2-4	Lab.Nr. <u>19 – 18</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C ₁₀ līdz C ₂₀ (naftas produkti), mg/kg	90	LUC EN 160 17702 2011
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	13	LV5 EN ISO 16703:2011

Parauga kods: VALM-S-3-1		Lab.Nr. <u>19 – 19</u>
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C ₁₀ līdz C ₂₀ (naftas produkti), mg/kg	27	
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	25	LVS EN ISO 16703:2011

Parauga kods: VALM-S-3-2		Lab.Nr. <u>19 – 20</u>
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C ₁₀ līdz C ₂₀ (naftas produkti), mg/kg	270	
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	30	LVS EN ISO 16703:2011

Parauga kods: VALM-S-3-3

Lab.Nr.19 - 21 Testēšanas rādītājs Rezultāts Testēšanas metode Ogļūdeņraži no C10 līdz C20 800 (naftas produkti), mg/kg LVS EN ISO 16703:2011 Oglūdeņraži no C20 līdz C40 110 (naftas produkti), mg/kg

TESTÉŠANAS PĀRSKATS Nr. 351-19 4. lpp. no 4

Pasütītājs, adrese: SIA "Vides Konsultāciju Birojs", Rīga, Ezermalas iela 28

Objekta šifrs: Paraugu ņemšanas vieta - Valmiera

Parauga kods: VALM-S-3-4		Lab.Nr. <u>19 – 22</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode	
Ogļūdeņraži no C10 līdz C20 (naftas produkti), mg/kg			
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	17	LVS EN ISO 16703:2011	

Testēšana veikta: no 26.04.19. līdz 11.05.19.

Datums: 13.05.2019.

Testēšanu veid	a: <u>I. Fogele</u>
Laboratorijas	adītāja:1.Fogele
	VKB
	CARON-TOPLIA
	Contras and and

SIA "Vides Konsultāciju Birojs" LABORATORIJA Rīgā, Ezermalas ielā 28, tālr. 20255171

e-pasts: laboratorija@laboratorija.vkb.lv

TESTĒŠANAS PĀRSKATS Nr. 350-19

Pasūtītājs, adrese: SIA "Vides Konsultāciju Birojs", Rīgā. Ezermalas ielā 28

Objekta šifrs: Paraugu nemšanas vieta - Valmiera

Paraugus iesniedza: M. Burkāns iesniegšanas datums: 26.04.2019.

Testējamais materiāls: gruntsūdens

Ziņas par paraugiem: tilpums, tara: 40 mL stikla pudeles ar PTEF oderētu vāciņu un 1 L stikla pudeles

Par paraugu nemšanu atbilstoši standartam atbild paraugu nēmējs.

Paraugu nēma M. Burkāns ("Vides Konsultāciju Birojs") 24.04.2019.

Testēšanas rezultāti

Parauga kods: VALM-GÜ-A2	Lab.Nr. <u>215 - 1</u>	
Testēšanas rādītājs	Rezultāts ± nenoteiktība*	Testēšanas metode
Naftas produktu ogļūdeņražu indekss, mg/L	45 ± 9	LVS EN ISO 9377-2:2001
pH 20°C	6,2	LVS EN ISO 10523:2012
Elektrovadītspēja 25°C, μS/cm	20200	LVS EN 27888-1993

Parauga kods: VALM-CU-U11

Parauga kods: VALM-GÜ-U11	Lab.Nr. <u>215 - 2</u>	
Testēšanas rādītājs	Rezultāts ± nenoteiktība*	Testēšanas metode
Naftas produktu ogļūdeņražu indekss, mg/L	530 ± 110	LVS EN ISO 9377-2:2001
pH 20°C	6,2	LVS EN ISO 10523:2012
Elektrovadītspēja 25°C, µS/cm	4280	LVS EN 27888-1993

Pietime:

* Uzrādītā nenoteiktība ir paplašinātā standartnenoteiktība, kas aprēķināta, izmantojot pārklāšanās koeficientu 2, kurš nodrošina 95% ticamības līmeni. Standarinenoteiktība tiek aprēķināta saskaņā ar LATAK - EA - 4/02 3.izd. Rezultāta nenoteiktība tiek uzrādīta, ja rezultāts ir lielāks vai vienāds ar QL (kvantitatīvi nosakāmā koncentrācija).

Testēšana veikta: no 26.04.19. līdz 02.05.19.

Testēšanu veica: I. Fogele, A. Balode

Datums: 13.05.2019.

Laboratorijas vadītāja: ++++ -I.Fogele

SIA "Vides audits" laboratorija

Dzērbenes iela 27, Rīga, LV-1006 tālr.: 67556152, fakss: 67545146 www.videsaudits.lv info@videsaudits.lv

30.04.2019

TESTĒŠANAS PĀRSKATS Nr. 2260-26.04-19

1. Informācija par pasūtītāju

Pasūtītājs: Vides Konsultāciju birojs, SIA

Adrese: Ezermalas iela 28, Rīga, Latvija, LV-1014

Tälrunis: 67557668,29336167

Fakss: 67801703

2. Pasūtītāja informācija par paraugiem:

Objekts: Valmiera

Paraugu nemšanas datums: 24.04.2019

N.p.k.	Ņemšanas vieta	Parauga veids
1	VALM-GÜ-A2	gruntsüdens
2	VALM-GÜ-U11	gruntsüdens

3. Paraugu apraksts

N.p.k.	Trauka veids	Daudzums
1	plastmasas pudele	1L
2	plastmasas pudele	1L

Paraugu pieņemšanas datums: 26.04.2019

Testēšanas rezultāti

Testēšanas izpildes sākuma/beigu datums: 26.04.2019/30.04.2019

Nosakāmais rādītājs	Mērv.	Rezultāts	Rezultāta ~ nenoteiktība	Testēšanas metodes Nr.
	1.	paraugs - VALN	I-GÛ-A2	
Kopējais slāpeklis, Nkop.	mg/L	1874	112	LVS ISO 10048-2002#
	2. ;	araugs - VALM	-GŨ-U11	
Kopējais slāpeklis, Nkop.	mg/L	520	31	LVS ISO 10048:2002

- uzdotā nenoteiktība ir paplašinātā nenoteiktība, kas aprēķināta, izmantojot A tipa (statistisko) pieeju un pārklāšanās koeficientu

2, kurš nodrošina 95% ticamības līmeni.

Rezultāti, kas mazāki par metodes noteikšanas robežu (MDL), uzdoti ar zīmi "< ".

Skaitlis, kas atrodas aiz zīmes "< ", ir vienāds ar MDL

norāda metodi, kura neietilpst laboratorijas akreditācijas sfērā.

Testēšanas rezultāti attiecas tikai uz konkrētajiem paraugiem!

Paraugu ņemšanu veicis pasūtītājs.

Testēšanas laboratorija nav atbildīga par pasūtītāja sniegtajām ziņām p.3./

Laboratorijas vadītājas vietniece:

Natalija Gorbunova

Bez SIA "Vides audits" laboratorijas rakstiskas atļaujas testēšānas pārskata reproducēšana nepilnā apjomā ir aizliegta!

Testéšanas pärskats Nr. 2260-26.04-19

I-KD-5-19-3-15-03-2007

Central Baltic

Gala pārskats PAR GRUNTS UN GRUNTSŪDENS MONIOTIRNGU

objektā Mazuta bāze" Valmierā, Dzelzceļa ielā 9

ANNEX 3

Copies of licences for the use of subterranean depths and accreditation certificates

INSURE

Valsts vides dienests

Rüpniecības iela 23, Rīga, LV-1045, tālr. 67084200, fakss 67084212, e-pasts vvd@vvd.gov.lv, www.vvd.gov.lv

ZEMES DZĪĻU IZMANTOŠANAS LICENCE Nr.CS17ZD0300

Izsniegta SIA "VIDES KONSULTĀCIJU BIROJS", reģistrācijas numurs: 40003282693

(pašvaldības nosaukums, komersanta firma un reģistrācijas numurs vai fiziskās personas vārds, uzvārds un personas kods)

Zemes dzīļu monitoringa sistēmas izveide vai monitoringa veikšana (zemes dzīļu izmantošanas veids)

Degvielas uzpildes stacijas, naftas bāzes, atkritumu izgāztuves un poligoni, rūpnieciskās apbūves teritorijas un piesārņotas vai potenciāli piesārņotas vietas

(licencētais objekts)

Latvijas teritorija

(licencētā objekta administratīvā piederība, ja iespējams, adrese)

Licence izsniegta Rīgā	2017.gada	31.oktobrī
un derīga līdz	2018.gada	1.novembrim

Pielikumā:

Nr.p.k.	Pielikuma nosaukums	Lpp. skaits
1.	zemes dzīļu izmantošanas nosacījumi	3
2.	karte vai plāns, kurā attēlo atradnes robežu, licences adresāta īpašumā vai nomā esošo zemesgabala robežas, licences laukuma robežu ar robežpunktiem; tabula ar robežpunktu koordinātām LKS-92 TM sistēmā	
3.	derīgo izrakteņu ieguves limits	

Licences pielikumi ir tās neatņemama sastāvdaļa

Valsts vides dienesta generaldirektore

(I.Kolegova) pille > (paraksts un tā atšifrējums) Z.v.

Zemes dzīļu izmantošanas licenci vai tajā noteiktos nosacījumus var apstrīdēt Vides pārraudzības valsts birojā Rūpniecības iela 23, Rīgā, viena mēneša laikā no licences spēkā stāšanās dienas, iesniegumu par administratīvā akta apstrīdēšanu iesniedzot Valsts vides dienestā.

Zemes dzīļu izmantošanas nosacījumi

- Zemes dzīļu izmantošanas licence Nr.CS17ZD0300 (turpmāk Licence) dod tiesības SIA "VIDES KONSULTĀCIJU BIROJS" (turpmāk – Adresāts) laikā no 2017.gada 2.novembra līdz 2018.gada 1.novembrim Latvijas teritorijā veikt zemes dzīļu monitoringa (turpmāk – monitorings) sistēmas izveidi vai monitoringa veikšanu degvielas uzpildes stacijās, naftas bāzēs, atkritumu izgāztuvēs un poligonos, rūpnieciskās apbūves teritorijās un piesārņotās vai potenciāli piesārņotās vietās (turpmāk – objekts).
- 2. Licence izsniegta Adresātam saskaņā ar:
 - 2.1. likuma "Par zemes dzīlēm" 10.panta pirmās daļas 3.punkta "e" apakšpunktu un 2¹.daļu;
 - 2.2. Ministru kabineta 2011.gada 6.septembra noteikumu Nr.696 Zemes dzīļu izmantošanas licenču un bieži sastopamo derīgo izrakteņu ieguves atļauju izsniegšanas kārtība" (turpmāk MK noteikumi Nr.696) 4.2.apakšpunktu.
- 3. Licence neatbrīvo Adresātu no Latvijas Republikas likumu un citu normatīvo aktu prasību ievērošanas, kā arī paredzētajām ekspertīzēm un saskaņošanām.
- 4. Zemes dzīļu izmantošanā jāņem vērā:
 - 4.1. Licences nosacījumus;
 - 4.2. likumu "Par zemes dzīlēm", likumu "Par piesārņojumu", Ministru kabineta: 2002.gada 22.janvāra noteikumus Nr.34 "Noteikumi par piesārņojošo vielu emisiju ūdenī", 2002.gada 12.marta noteikumus Nr.118 "Noteikumi par virszemes un pazemes ūdeņu kvalitāti", 2005.gada 25.oktobra noteikumus Nr.804 "Augsnes un grunts kvalitātes normatīvi", 2009.gada 17.februāra noteikumus Nr.158 "Noteikumi par prasībām attiecībā uz vides monitoringu un tā veikšanas kārtību, piesārņojošo vielu reģistra izveidi un informācijas pieejamību sabiedrībai", 2011.gada 27.decembra noteikumus Nr.1032 "Atkritumu poligonu ierīkošanas, atkritumu poligonu un izgāztuvju apsaimniekošanas, slēgšanas un rekultivācijas noteikumi", 2004.gada 17.februāra noteikumus Nr.92 "Prasības virszemes ūdeņu, pazemes ūdeņu un aizsargājamo teritoriju monitoringam un monitoringa programmu izstrādei"; 2012.gada 12.jūnija noteikumus Nr.409 "Noteikumi par vides aizsardzības prasībām degvielas uzpildes stacijām, naftas bāzēm un pārvietojamām cisternām" (turpmāk MK noteikumi Nr.409);
 - 4.3. citas prasības monitoringa sistēmas izveidei vai veikšanai, kuras var tikt noteiktas Latvijas Republikas likumos un normatīvajos aktos Licences derīguma termiņa laikā.
- 5. Pirms monitoringa sistēmas izveides Valsts ģeoloģijas fondā iepazīties ar objekta teritorijas ģeoloģiskajiem un hidroģeoloģiskajiem apstākļiem, veikt teritorijas apsekošanu un izvērtēt visu pasūtītāja sniegto informāciju par objektu.
- 6. Monitoringa sistēmas izveidi vai monitoringa veikšanu Adresāts var uzsākt pēc (MK noteikumu Nr.696 25.punkta nosacījumi):
 - 6.1. līguma noslēgšanas ar zemes īpašnieku, tiesisko valdītāju vai pilnvarotu personu par tiesībām veikt monitoringa sistēmas izveidi vai monitoringu;
 - 6.2. monitoringa sistēmas izveidei vai veikšanai darbu programmas sastādīšanas un tās saskaņošanas ar monitoringa pasūtītāju. Monitoringa sistēmas izveidei vai veikšanai darbu programmā iekļaut informāciju par darbu pasūtītāju un zemes īpašuma īpašnieku, darbu uzdevumiem, objekta nosaukumu un tā administratīvo piederību, monitoringa sistēmas izveides vai veikšanas laiku un pazemes ūdeņu un grunts paraugiem nosakāmiem parametriem, kā arī tai pievienot plānu ar monitoringa urbumu paredzēto izvietojumu.

- Informēt elektroniski: vvd@vvd.gov.lv vai pa faksu 67084212 (vēlams ne vēlāk kā 5 darba dienas pirms darbu uzsākšanas) Valsts vides dienestu (turpmāk – VVD) par monitoringa sistēmas izveides un/vai monitoringa veikšanas laiku konkrētā objektā (MK noteikumu Nr.696 25.punkta nosacījums).
- 8. Izveidojot monitoringa sistēmu:
 - 8.1. izstrādņu tīklu veidot un ierīkot tā, lai kontrolētu pieplūstošā un aizplūstošā ūdens kvalitāti un pazemes ūdeņu līmeņus;
 - 8.2. novērošanas izstrādņu tīklam jāsastāv vismaz no trim urbumiem. Vismaz viens no urbumiem jāierīko gruntsūdens plūsmas augšpusē un lejpus no esošiem un/vai plānotiem potenciāliem piesārņojuma avotiem;
 - 8.3. urbuma dziļumu noteikt atkarībā no objekta ģeoloģiski-hidroģeoloģiskajiem apstākļiem. Urbums jāierīko 2-3 m dziļāk par gruntsūdens horizonta virsmu;
 - 8.4. urbumu urbšanas gaitā aprakstīt atsegtos iežus lauku žurnālā;
 - 8.5. gruntsūdens kvalitātes noteikšanai un kontrolei, izurbtajos urbumos ierīkot gruntsūdens novērošanas akas (turpmāk aka). Filtru urbumā (akā) jāievieto tā, lai gruntsūdens virsma šķērsotu to pa vidu;
 - 8.6. degvielas uzpildes stacijās un naftas bāzēs pazemes ūdeņu un grunts paraugus atļauts ņemt akreditētām laboratorijām vai akreditētiem komersantiem;
 - 8.7. pazemes ūdeņu un grunts paraugu analīzes veikt atbilstošā jomā akreditētā laboratorijā;
 - 8.8. noteikt akām atveru absolūto augstumu, izmantojot Eiropas Vertikālās atskaites sistēmas realizāciju Latvijas teritorijā;
 - 8.9. noteikt akām koordinātas, izmantojot Latvijas 1992.gada ģeodēzisko koordinātu sistēmu {LKS-92 TM};
 - 8.10. aprīkot aku atveres un veikt aku krāsošanu un marķēšanu (akas numuru u.c.);
 - 8.11. ņemot vērā MK noteikumu Nr.409 2.pielikuma nosacījumus, sagatavot pazemes ūdeņu novērojumu urbumu tīkla tehnisko pasi (turpmāk – tehniskā pase) un iesniegt monitoringa pasūtītājam.
- 9. Veicot monitoringu:
 - 9.1. veikt objekta apsekošanu (rekognosciju) un novērošanas aku tehniskā stāvokļa novērtējumu, rezultātus fiksējot speciāli sagatavotā veidlapā;
 - 9.2. objektos, kas saistīti ar naftas produktiem veikt peldošu naftas produktu slāņa klātbūtnes pārbaudi;
 - 9.3. veikt aku dziļuma un gruntsūdens līmeņa mērījumus. Ja mērījumi jāveic piesārņotā objektā, visas darbības jāveic, sākot ar tīrāko aku;
 - 9.4. pirms paraugu noņemšanas katru novērošanas aku atsūknēt. Katrā konkrētajā akā veikt atsmeļamā ūdens tilpuma aprēķinu un sekot līdzi ūdens atdzidrināšanās pakāpes un dinamiskā līmeņa izmaiņām;
 - 9.5. degvielas uzpildes stacijās un naftas bāzēs pazemes ūdeņu un grunts paraugus atļauts ņemt akreditētām laboratorijām vai akreditētiem komersantiem;
 - 9.6. atsūknēšanas gaitā veikt hidroķīmiskos mērījumus noteikt pH, elektrovadītspēju un temperatūru. Mērījumu rezultātus fiksēt speciāli sagatavotā veidlapā;
 - 9.7. pēc hidroķīmisko rādītāju stabilizācijas noņemt ūdens paraugus un nogādāt valsts akreditētā laboratorijā;
 - 9.8. ņemot vērā MK noteikumu Nr.409 3.pielikuma nosacījumus, apkopot monitoringa rezultātus un iesniegt monitoringa pasūtītajam.
- 10. Veicot zemes dzīļu izmantošanu:
 - 10.1. izmantot speciālus, sertificētus mērinstrumentus;
 - 10.2. veikt teritorijas labiekārtošanu ap katru urbumu (aku);
 - 10.3. nepieļaut vides piesārņošanu.

- Monitoringa sistēmas izveidei vai monitoringa veikšanai derīgo izrakteņu atradņu teritorijās un to apkārtnē nepieciešams saņemt atsevišķu licenci VVD.
- Ik pēc trim mēnešiem iesniegt VVD (elektroniski: vvd@vvd.gov.lv vai pa faksu 67084212) sarakstu par objektiem, kuros ir izveidota monitoringa sistēma vai veikts monitorings. Ja zemes dzīlu izmantošana netiek veikta, par to arī informēt VVD.
- Par katru objektu, kurā tiks izveidota monitoringa sistēma vai veikts monitorings, sagatavot pārskatu.
 - 13.1. sagatavojot pārskatu, izmantot licencētas datorprogrammas;
 - 13.2. iekļaut informāciju par objekta atrašanās vietu un piederību, ģeoloģiski hidroģeoloģisko raksturojumu, darbu metodiku un tām izmantojamo aprīkojumu un darbu rezultātiem;
 - 13.3. pievienot monitoringa sistēmas izveidei vai veikšanai darbu programmu ar pielikumiem, tehnisko pasi, monitoringa rezultātus, topogrāfisko plānu ar urbumu (aku) izvietojumu un Licences kopiju.
- Pārskatus ne vēlāk kā līdz Licences derīguma termiņa beigām iesniegt valsts sabiedrībai ar ierobežotu atbildību "Latvijas Vides, ģeoloģijas un meteoroloģijas centrs" (turpmāk – LVĢMC). Iesniegt (elektroniski: vvd@vvd.gov.lv vai pa faksu 67084212) VVD sarakstu par nodotajiem pārskatiem LVĢMC.

Valsts ģeoloģijas fondā nodotās informācijas glabāšanas un izmantošanas kārtību, konfidencialitātes līmeni un termiņu nosaka 2012.gada 28.augusta noteikumi Nr.578 "Noteikumi par ģeoloģiskās informācijas sistēmu".

- 15. Licences nosacījumu grozījumu nepieciešamības gadījumā Adresātam jāgriežas VVD.
- 16. Adresātam atļautā zemes dzīļu izmantošana var tikt ierobežota vai apturēta, kā arī Licence atcelta likumā "Par zemes dzīlēm" noteiktajos gadījumos un noteiktajā kārtībā.
- 17. Uzrādīt Licenci VVD amatpersonām pārbaudes laikā.

Valsts vides dienesta generaldirektore

Holyour

I.Kolegova

Millere 67084210 agija.millere@vvd.gov.lv

Valsts vides dienests

Rüpniecības iela 23, Rīga, I.V-1045, tālr. 67084200, fakss 67084212, e-pasts vvd@vvd.gov.lv, www.vvd.gov.lv

ZEMES DZĪĻU IZMANTOŠANAS LICENCE Nr.CS18ZD0270

Izsniegta Sabiedrībai ar ierobežotu atbildību "VIDES KONSULTĀCIJU BIROJS", reģistrācijas numurs: 40003282693

(pašvaldības nosaukums, komersanta firma un reģistrācijas numurs vai fiziskās personas vārds, uzvārds un personas kods)

Zemes dzīļu monitoringa sistēmas izveide vai monitoringa veikšana

(zemes dzīļu izmantošanas veids)

Degvielas uzpildes stacijas, naftas bāzes, atkritumu izgāztuves un poligoni, rūpnieciskās apbūves teritorijas un piesārņotas vai potenciāli piesārņotas vietas

(licencētais objekts)

Latvijas teritorija

(licencētā objekta administratīvā piederība, ja iespējams, adrese)

Licence izsniegta Rīgā	2018.gada	23.oktobrī
un derīga līdz	2019.gada	1.novembrim

Pielikumā:

Nr.p.k.	Pielikuma nosaukums	Lpp. skaits
1.	 zemes dzīļu izmantošanas nosacījumi 	
2.	karte vai pläns, kurā attēlo atradnes robežu, licences adresāta īpašumā vai nomā esošo zemesgabala robežas, licences laukuma robežu ar robežpunktiem; tabula ar robežpunktu koordinātām LKS-92 TM sistēmā	-
3.	derīgo izraktenu ieguves limits	-

Licences pielikumi ir tās neatņemama sastāvdaļa

Valsts vides dienesta generaldirektore

(I.Kolegova) your > (paraksts un tā atšifrējums)

Z.v.

Zemes dzīļu izmantošanas licenci vai tajā noteiktos nosacījumus var apstrīdēt Vides pārraudzības valsts birojā Rūpniecības iela 23, Rīgā, viena mēneša laikā no licences spēkā stāšanās dienas, iesniegumu par administratīvā akta apstrīdēšanu iesniedzot Valsts vides dienestā.

gadījumā iesniegt iesniegumu grozījumu

I. Vispārīgie zemes dzīļu izmantošanas nosacījumi					
Licences derīguma termiņš	2018.gada 2.novembris līdz 2019.gada 1.novembris.				
Licences izsniegšanas pamatojums	 a) Likuma "Par zemes dzīlēm" 10.panta pirmās daļas 3.punkta "e" apakšpunkts un 2¹.daļa; b) Ministru kabineta 2011.gada 6.septembra noteikumu Nr.696 				

Nepieciešamības

1.

2.

3.

4.

Grozījumi

Zemes dzīļu

Zemes dzīļu izmantošanas nosacījumi

inas	apakšpunkts un 2 ¹ .daļa;
ums	 b) Ministru kabineta 2011.gada 6.septembra noteikumu Nr.696 "Zemes dzīļu izmantošanas licenču un bieži sastopamo derīgo izrakteņu ieguves atļauju izsniegšanas kārtība" (turpmāk – MK noteikumi Nr.696) 4.2.apakšpunkts.

(turpmāk - VVD) (MK noteikumu Nr.696 34.punkts).

veikšanai licencē un grozījumu pamatojumu Valsts vides dienestā

Zemes dzīļu izmantošana var tikt ierobežota, apturēta un licence izmantošanas atcelta likumā "Par zemes dzīlēm" 16.pantā noteiktajos gadījumos ierobežošana. un noteiktajā kārtībā. apturēšana 5. VVD informēšana Informet VVD elektroniski (e-pasts: vvd@vvd.gov.lv): a) pirms (vēlams 5 darba dienas) monitoringa sistēmas izveides un/vai veikšanas konkrētā objektā (MK noteikumu Nr.696 25.punkts); b) par nodotajiem pārskatiem valsts SIA "Latvijas Vides, ģeoloģijas un meteoroloģijas centrs" (turpmāk - LVGMC).

II. Monitoringa sistēmas izveides vai monitoringa veikšanas nosacījumi

6.	Normatīvie akti	 a) Likums "Par piesärņojumu", Ministru kabineta: 2002.gada 22.janvāra noteikumi Nr.34 "Noteikumi par piesārņojošo vielu emisiju ūdenī", 2002.gada 12.marta noteikumi Nr.118 "Noteikumi par virszemes un pazemes ūdeņu kvalitāti", 2004.gada 17.februāra noteikumi Nr.92 "Prasības virszemes ūdeņu, pazemes ūdeņu un aizsargājamo teritoriju monitoringam un monitoringa programmu izstrādei", 2005.gada 25.oktobra noteikumi Nr.804 "Augsnes un grunts kvalitātes normatīvi", 2009.gada 17.februāra noteikumi Nr.158 "Noteikumi par prasībām attiecībā uz vides monitoringu un tā veikšanas kārtību, piesārņojošo vielu reģistra izveidi un informācijas pieejamību sabiedrībai", 2011.gada 27.decembra noteikumi Nr.1032 "Atkritumu poligonu ierīkošanas, atkritumu poligonu un izgāztuvju apsaimniekošanas, slēgšanas un rekultivācijas noteikumi", 2012.gada 12.jūnija noteikumi Nr.409 "Noteikumi par vides aizsardzības prasībām degvielas uzpildes stacijām, naftas bāzēm un pārvietojamām cisternām"; b) Ņemt vērā, ka licence neatbrīvo no Latvijas Republikas likumu un citu normatīvo aktu prasību ievērošanas, kā arī paredzētajām ekspertīzēm un saskaņošanām.
7.	Monitoringa sistēmas izveide un monitoringa veikšana	 a) Noslēgt līgumu ar zemes īpašnieku, tiesisko valdītāju vai pilnvarotu personu par tiesībām veikt monitoringa sistēmas izveidi vai veikšanu (MK noteikumu Nr.696 25.punkts); b) Sastādīt monitoringa sistēmas izveides vai veikšanas programmu un saskaņot to ar darbu pasūtītāju (MK noteikumu Nr.696 25.punkts);

 Monitoringa sistēmas izveide un monitoringa veikšana 	 c) Veikt teritorijas apsekošanu dabā, izvērtēt Valsts ģeoloģijas fondā pieejamos materiālus un visu pasūtītāja sniegto informāciju par objektu; d) Izstrādņu tīklu veidot un ierīkot tā, lai kontrolētu pieplūstošā un aizplūstošā ūdens kvalitāti un pazemes ūdeņu līmeņus; e) Urbuma dziļumu noteikt atkarībā no objekta ģeoloģiski- hidroģeoloģiskajiem apstākļiem. Urbums jāierīko 2-3 m dziļāk par gruntsūdens horizonta virsmu; f) Urbumu urbšanas gaitā aprakstīt atsegtos iežus lauku žurnālā; g) Gruntsūdens kvalitātes noteikšanai un kontrolei, izurbtajos urbumos ierīkot gruntsūdens novērošanas akas (turpmāk – aka). Filtru akā jāievieto tā, lai gruntsūdens virsma šķērsotu to pa vidu; h) Noteikt akām atveru absolūto augstumu, izmantojot Eiropas Vertikālās atskaites sistēmas realizāciju Latvijas teritorijā un koordinātas, izmantojot Latvijas 1992.gada ģeodēzisko koordinātu sistēmu {LKS-92 TM}; i) Aprīkot aku atveres un veikt aku krāsošanu un marķēšanu (akas numuru u.c.) un teritorijas labiekārtošanu ap akām; j) Veikt aku dziļuma un gruntsūdens līmeņa mērījumus. Ja mērījumi jāveic piesārņotā objektā, visas darbības jāveic, sākot ar tīrāko aku; k) Pirms paraugu noņemšanas katru novērošanas aku atsūknēt. Katrā konkrētajā akā veikt atsmeļamā ūdens tilpuma aprēķinu un sekot līdzi ūdens atdzidrināšanās pakāpes un dinamiskā līmeņa izmaiņām; l) Pazemes ūdeņu un grunts paraugu analīzes veikt akreditētā laboratorijā; m)Monitoringa sistēmas izveidei vai monitoringa veikšanai derīgo izrakteņu atradņu teritorijās un to apkārtnē nepieciešams saņemt atsevišku licenci VVD
8. Ģeoloģiskā informācija	 a) Rezultātus apkopot monitoringa sistēmas izveides vai veikšanas darbu pārskatā;
	 b) Pārskatu elektroniskā un papīra formā nodot LVĢMC līdz licences derīguma termiņa beigām (Ministru kabineta 2012.gada 28.augusta noteikumu Nr.578 "Noteikumi par ģeoloģiskās informācijas sistēmu" 4.punkts).
9. Vides aizsardzība	 a) Nepieļaut grunts, zemes dzīļu, virszemes un pazemes ūdeņu piesārņojumu vai citu kaitējumu videi; b) Paredzēt pasākumus, lai tehnikas darbības laikā netiktu pārsniegtas trokšņu emisiju pieļaujamās vērtības; c) Savākt un nodot atkritumu apsaimniekotājiem monitoringa sistēmas izveides vai veikšanas laikā radušos atkritumus; d) Apturēt vai ierobežot monitoringa darbus, ja atklājas zinātnei, kultūrai un vides aizsardzībai nozīmīgi ģeoloģiskie veidojumi vai citi objekti, nekavējoties zinot par atklājumu VVD

Valsts vides dienesta ģenerāldirektore

Joeupowe

I.Kolegova

Zariņa 67084284 dace.zarina@vvd.gov.lv

LATVIJAS NACIONĀLAIS AKREDITĀCIJAS BIROJS

Eiropas Akreditācijas kooperācijas Daudzpusējā atzīšanas līguma (EA MLA) dalībnieks testēšanas un kalibrēšanas laboratoriju, produktu, personu un pārvaldības sistēmu sertificēšanas institūciju, inspicēšanas un verificēšanas institūciju akreditācijas jomās

AKREDITĀCIJAS APLIECĪBA

SIA "Standartizācijas, akreditācijas un metroloģijas centrs" Latvijas Nacionālais akreditācijas birojs ar šo apliecina, ka

SIA "Vides konsultāciju birojs" laboratorija

Juridiskā adrese: Pils iela 7 - 11, Rīga, LV-1050 Atrašanās vietas adrese: Ezermalas iela 28, Rīga, LV-1014

ir kompetenta veikt testēšanu atbilstoši LVS EN ISO/IEC 17025:2005 standarta prasībām nereglamentētajā sfērā:

ūdens ķīmiskā un fizikāli ķīmiskā testēšana; minerālo materiālu ķīmiskā testēšana; augsnes un augsnes ielabošanas līdzekļu (sapropelis, kūdra) fizikāli ķīmiskā testēšana un kūdras botāniskā testēšana; grunts fizikālā, fizikāli ķīmiskā un mehāniskā testēšana; notekūdeņu paraugu ņemšana

atbilstoši LVS EN ISO/IEC 17025:2005 standarta prasībām un Ministru kabineta noteikumiem reglamentētajā sfērā:

pazemes un dzeramā ūdens paraugu ņemšana, ūdens ķīmiskā un fizikāli ķīmiskā testēšana, grunts paraugu ņemšana, augsnes un grunts fizikāli ķīmiskā testēšana

Akreditācijas apliecība derīga līdz 2019. gada 7. maijam.

Akreditētā darbības sfēra definēta pielikumā uz 6 lapām, kas ir šīs akreditācijas apliecības neatņemama sastāvdaļa.

LATAK reģistrācijas Nr. LATAK-T-292-13-2005

Rīga, 2016. gada 22. jūlijs

O.Veilande SIA "Standartizācijas, akreditācijas un metroloģijas centrs" Latvijas Nacionālā akreditācijas biroja vadītāja

M.Drille Akreditācijas komisijas priekšsēdētājs Rīga

European Union European Regional Development Fund

REPORT

ON SOIL AND GROUNDWATER MONITORING STAGE 2 (Pilot- test monitoring – sampling & analysis)

At the object Former Heavy Fuel Oil Facilities of SIA Valmieras Siltums Dzelzceļa Street 9, Valmiera

> Riga January, 2019

REPORT ON SOIL AND GROUNDWATER MONITORING STAGE 2 (Pilot- test monitoring – sampling & analysis)

Former Heavy Fuel Oil Facilities of SIA *Valmieras Siltums* Dzelzceļa Street 9, Valmiera

THE CUSTOMER:

(no 07.08.2018.)

THE CONTRACTOR:

Valmiera City Council

Contract No. 05-651/2.4.4.1/18/71

"Vides Konsultāciju Birojs", Ltd

Prepared by:

Pēteris Birzgalis Geologist

Ezermalas iela 28, Rīga, LV-1014 Tālr.: +371 67 557 668 Fakss: +371 67 801 703 birojs@vkb.lv www.vkb.lv

"Former Heavy Fuel Oil Facilities of SIA VALMIERAS SILTUMS" Valmierā, Dzelzceļa street 9

SATURA RĀDĪTĀJS

SATURA RĀDĪTĀJS			
INTRODUCTION	4		
2. GEOLOGY AND HYDROGEOLOGY	5		
2.1. Geology	5		
2.2. Hydrogeology	6		
2. METHODOLOGY OF THE PERFORMED WORKS			
2.2. Drilling works and the collection of soil samples.	8		
2.3. Groundwater sample collection	9		
2.4. Laboratory testing of samples	9		
3. SOIL QUALITY	10		
5. GROUNDWATER QUALITY	12		
CONCLUSION	13		

ANNEX 1

Borehole descriptions, plan of the boreholes

ANNEX 2

List of sample collection intervals and copies of laboratory testing reports

ANNEX 3

Copies of licences for the use of subterranean depths and accreditation certificates

INTRODUCTION

This report overviews data on soil and groundwater monitoring and laboratory testing at the potentially contaminated site "Former heavy fuel oil facilities of Valmieras Siltums, Ltd", Dzelzceļa Street 9, Valmiera.

Sample taking and testing was done accordingly to the procedure of procurement No. VPP 2018/040P and mutually signed contract No. 05-651/2.4.4.1/18/71 (starting from 07.08.2018) between the municipality of Valmiera and Vides Konsultāciju Birojs, Ltd.

The objective: To perform cleanup/ remediation of a potentially contaminated site (is included in the Register of Contaminated and Potentially Contaminated Sites) within the scope of project "INSURE", using electrokinetic *in situ* method- pilot testing. It is planned to carry out soil and groundwater monitoring and testing, in order to evaluate the changes of contamination during the remediation process. This is one of the most significant factors to evaluate the effectiveness of this method.

The scope of works performed: monitoring stage

Following was carried out in several phases:

- 1) The drawing up and approval of the scope of work and timing with customer and partners (experts) from Helsinki university;
- 2) the surveying of the territory jointly with the customer and the partners (experts) from Helsinki university;
- 3) Decision making mutually with the customer and partners (experts) from Helsinki university on the borehole location map;
- 4) field works: geological drilling (3 pcs. boreholes in site and 2 pcs. boreholes off site), collection of generalized soil samples;
- 5) secondary field works: pumping the water out of groundwater wells, *in situ* tests of physical and chemical parameters of groundwater, collection of samples;
- 6) laboratory testing of soil and groundwater sample quality in terms of contamination with oil products and general contamination parameters;
- 7) Summary of the results and preparation of the report.

See the following sections of the review for a detailed description of the performed works, obtained results, and conclusions.

2. GEOLOGY AND HYDROGEOLOGY

2.1. Geology

Geomorphologically the object is situated in the Trikāta rise of Ziemeļvidzeme lowland.

The thickness of Quaternary sediment in this part of Latvia is small and varies within the limits of 10 to 20 m and consists mainly of moraine sandy loam and loam poorly filtering water, as well as erratic masses of different type, as well as individual sand - gravel inclusions.

The evaluation of the data of the Geological Map of Latvia¹ of the researched territory allows to conclude that sediments poorly filtering water - sandy loam and loam can be expected in the territory under research.

The geological cross-section of the territory surveyed during the research works is comparatively simple - its upper part consists of Quaternary sediment layer on top of mid-Devonian base rock.

The geological cross-section of the object is as follows (from top to bottom) - soil or asphalt, concrete, stone chippings. Under the soil layer there is a mixed loam or earth-filled gravel with construction waste. The natural cross-section is opened to the depth of 0.6 - 1.8 m and consists of fine sand or sandy loam. Deeper, at the depth of 3.5 - 4.0 m a hard sandy loam with intermediate layers of pebbles and sand, which has been found up to the depth of approximately 16 m within the researched territory.

The overall filtration properties of Quaternary water-saturated are poor and not favourable for the migration of potential groundwater contamination either in the plan or cross-section (Kf of loose soil in the samples taken at the level of groundwater saturation is 0.3 - 0.8 m within a day).

¹ Geological Map of Latvia, 1:200 000, State Geological Service 1998

2.2. Hydrogeology

The hydro-geological situation at the object and in its vicinity is primarily affected by the geo-morphological and geological properties of its location, weather conditions and the network of drainage ditches, which serve as the principal groundwater table runoff carriers.

Groundwater table has been detected at varying depth in this region, however in the slacks (site of the researched object) it seldom exceeds 0.3-1.0 m, which promotes bogging. In elevated territories the groundwater is frequently associated with deeper water horizons of Gauja and Burtnieki suites. Regionally, the potential hazard of artesian horizon contamination is reduced by the fact that these waters are drained by the deep Gauja valley and the contamination enters surface waters.

During the drilling works, the groundwater was detected at the depth of 1.2 - 4.0 m, meanwhile, after the installation fo monitoring wells and settlement of the levels, the groundwater table stabilised at the depth of 1.70 - 2.72 m from the ground surface.

Considering the amount of the performed works, the direction of groundwater flow can be determined rather precisely, it is directed westwards or towards the railway embankment and the adjacent ditch, as well as towards the slightly more remote depression in the earth surface (slack).

2. METHODOLOGY OF THE PERFORMED WORKS

2.1. Selection of borehole site

Upon the selection of borehole sites, the work order, the work programme, the spatial planning (including the location of tanks, buildings and unloading areas), as well as the potential geological and hydro-geological conditions of the area and recommendations from experts University of Helsinki.

Installation of boreholes was carried out in the following steps:

- The first two borehole installation accordingly to recommendations from expert Martin Romantschuk (University of Helsinki);
- The other three borehole installation at the central part of the pilot test polygon, accordingly to recommendations from expert Martin Romantschuk (University of Helsinki).

Image No. 1

Soil sampling at the object on 15/01/2019

The performer of monitoring collecting and sampling has a licence No. CS18ZD0270 (valid by 01.11.2019) issued by SES of the republic of Latvia.

2.2. Drilling works and the collection of soil samples.

Drilling works for the collection of soil samples and for the drawing up of geological cross-section were performed on 15th of January, 2019. A spiral drilling method was used to drill 5 holes up to depth of 4 meters. During the drilling, the groundwater appeared at the depth of 2.0-2.5 m from the earth surface.

The following devices/rigs and methods have been used for the works:

1. Fraste Terra- In , spiral drilling with the D of 100mm.

Image No. 2

Drilling works with the equipment/ mechanic drilling rig "Fraste Terra- $\mbox{In}"$

During the drilling works, soil samples were taken from each borehole in accordance with ISO 10381-5 standard. Soil samples were predominantly taken at four different intervals of depth - depth of 0.0 -0.1 m, 1.0-2.0m, 2.0- 3.0m and 3.0- 4.0m, thus enabling to determine the intensity of changes of contamination at different depths. Each sample weighed around 100- 200 grams.

The soil taken out during the drilling process, was used for laboratory testing (30%) and the remaining 70 % of soil that was taken extracted was used to fill up boreholes, therefore, excessive soil which could be considered as hazardous waste, was not gathered.

Sampling boreholes were installed in 30-50 cm distance to ones installed in September, making sampling conditions as similar to already performed one as possible.

2.3. Groundwater sample collection

Groundwater samples were collected in accordance with LVS ISO 5667-11:2011 standard on 15th of January, 2019, using polytetrafluoroethylene cylinder.

Before the collection of samples, the wells were purified from small gravel particles. During the purification, physical and chemical parameters of groundwater were tested (pH, electrical conductivity, and others) using a calibrated device. Before collection of samples, water was drawn off (equal to the volume of three times of drawing off the water) in order to achieve precise and representative groundwater results from the horizon. Before water was drawn off and samples taken, detection of floating layer of oil products was performed and the thickness of layer (if present) measured. At the well No. 11, where floating layer of oil products was detected, the thickness of it was measured. In total, 2 groundwater samples were taken, which were packed transported accordingly fur further testing.

2.4. Laboratory testing of samples

The soil and groundwater and subterranean water samples were placed in appropriate containers and delivered to accredited laboratories for further testing. Before testing, temperature measurements were taken. Collected samples were divided in two identical parts, from which one was delivered for further testing in Latvia, but the other was given to representatives from Helsinki University.

Testing of samples was done by an accredited laboratory "Vides Konsultāciju Birojs", Ltd.

3. SOIL QUALITY

Within the Stage 2 of monitoring following number of samples were tested:

- Presence of oil products (C10-C20 and C20-C40) 20 samples.

Below is the summary of monitoring Stage 2 soil laboratory testing results.

Table 1

			2	021.09.201	.8		15.01.2018	
	Sampling			Cond	entration in s	soil sample, n	ng/kg	
Sampling point	interval (m	Sample code	Oil products					
and No.	from surface)		C10-C20	C20-C40	C10-C40	C10-C20	C20-C40	C10-C40
	0.0-1.0	VALM-K-1-1	50	45	95	-	-	-
1/1	1.0-2.0	VALM-K-1-2	570	140	710	-	-	-
Κl	2.0-3.0	VALM-K-1-3	3100	770	3870	-	-	-
	3.0-4.0	VALM-K-1-4	560	160	720	-	-	-
	0.0-1.0	VALM-K-2-1	250	160	410	-	-	-
K 2	1.0-2.0	VALM-K-2-2	3100	750	3850	-	-	-
K2	2.0-3.0	VALM-K-2-3	6200	1300	7500	-	-	-
	3.0-4.0	VALM-K-2-4	1200	150	1350	-	-	-
K3	0.0-1.0	VALM-K-3-1	65	34	99	-	-	-
	1.0-2.0	VALM-K-3-2	4500	540	5040	-	-	-
	2.0-3.0	VALM-K-3-3	4000	350	4350	-	-	-
	3.0-4.0	VALM-K-3-4	570	90	660	-	-	-
	0.0-1.0	VALM-K-4-1	84	37	121	-	-	-
KA	1.0-2.0	VALM-K-4-2	2700	480	3180	-	-	-
κ4	2.0-3.0	VALM-K-4-3	2700	440	3140	-	-	-
	3.0-4.0	VALM-K-4-4	160	32	192	-	-	-
	0.0-1.0	VALM-A-1-1	<2.6	<2.6	<5.2	-	-	-
A 1	1.0-2.0	VALM-A-1-2	36	5.2	41.2	-	-	-
AI	2.0-3.0	VALM-A-1-3	31	3.4	34.4	-	-	-
	3.0-4.0	VALM-A-1-4	20	4.4	24.4	-	-	-
	0.0-1.0	VALM-A-2-1	21	3.5	24.5	-	-	-
4.2	1.0-2.0	VALM-A-2-2	29	8.9	37.9	-	-	-
AZ	2.0-3.0	VALM-A-2-3	30	6.5	36.5	-	-	-
	3.0-4.0	VALM-A-2-4	<2.6	<2.6	<5.2	-	-	-
4.2	0.0-1.0	VALM-A-3-1	29	5.4	34.4	-	-	-
A3	1.0-2.0	VALM-A-3-2	22	3.9	25.9	-	-	-

Content of oil products in soil samples, September, 2018.

Web: http://www.vkb.lv ; E-pasts: birojs@vkb.lv

REPORT SOIL AND GROUNDWATER MONITORING Stage 2 (Pilot- test monitoring – sampling & analysis) at the object

"Former Heavy Fuel Oil Facilities of SIA VALMIERAS SILTUMS" Valmierā, Dzelzceļa street 9

	2.0-3.0	VALM-A-3-3	27	3.8	30.8	-	-	-
	3.0-4.0	VALM-A-3-4	61	10	71	-	-	-
	0.0-1.0	VALM-A-4-1	36	15	51	-	-	-
	1.0-2.0	VALM-A-4-2	32	11	43	-	-	-
A4	2.0-3.0	VALM-A-4-3	28	10	38	-	-	-
	3.0-4.0	VALM-A-4-4	23	7.8	30.8	-	-	-
	0.0-1.0	VALM-F-1-1	100	61	161	13	<2.6	13
[1 (off site)	1.0-2.0	VALM-F-1-2	1200	300	1500	1800	300	2100
FI (OII-SILE)	2.0-3.0	VALM-F-1-3	710	190	900	18	14	32
	3.0-4.0	VALM-F-1-4	68	36	104	140	40	180
	0.0-1.0	VALM-F-2-1	37	31	68	150	45	195
F2 (off site)	1.0-2.0	VALM-F-2-2	48	16	64	6	<2.6	6
F2 (OII-Site)	2.0-3.0	VALM-F-2-3	44	11	55	5.7	<2.6	5.7
	3.0-4.0	VALM-F-2-4	12	9	21	6.1	<2.6	6.1
	0.0-1.0	VALM-S-1-1	19	5.2	24.2	49	19	68
S1 (in site)	1.0-2.0	VALM-S-1-2	1000	210	1210	14	8	22
ST (III-SILE)	2.0-3.0	VALM-S-1-3	1600	240	1840	520	70	590
	3.0-4.0	VALM-S-1-4	54	7.4	61.4	71	10	81
	0.0-1.0	VALM-S-2-1	29	23	52	5	<2.6	5
S2 (in site)	1.0-2.0	VALM-S-2-2	180	50	230	590	54	644
SZ (III-SILE)	2.0-3.0	VALM-S-2-3	46	5.4	51.4	13	8	21
	3.0-4.0	VALM-S-2-4	15	<2.6	15	43	11	15
	0.0-1.0	VALM-S-3-1	19	3.3	22.3	12	<2.6	12
S2 (in cito)	1.0-2.0	VALM-S-3-2	1900	610	2510	23	3	26
55 (III-SILE)	2.0-3.0	VALM-S-3-3	420	110	530	950	120	1070
	3.0-4.0	VALM-S-3-4	52	16	68	1300	140	1440

5. GROUNDWATER QUALITY

Summary below shows monitoring Stage 1 laboratory testing results for groundwater samples.

Number if tested samples:

- Content of oil products, 2 samples.
- Potential of hydronium ions, (pH) 2 samples.
- Floating oil product layer, 1 sample (monitoring well, 3 cm).

Table 2

				Conce	entration in g	rowndwater		
Sampling	BH No	Sample						
date	BITNO.	code	C10- C40, mg/l	Benzene (ug/l)	Toluene (ug/l)	Ethilbenzene (ug/l)	xylols (sum, ug/l)	Notes.
15.01.2019	Monitoring well No. 11	VALM- GU-Ū11	1800	610	980	450	2150	LANPL = 3cm (2.97- 3.00)
15.01.2019	Anode well No. 2	VALM-S- GŪ-2	1.5	<0.25	<0.25	<0.25	<0.5	Brown color (rust)

Oil product concentration in groundwater September, 2018

CONCLUSION

- 1. In January, 2019, the specialists of *Environmental Consultation Bureau*, Ltd. performed the soil and groundwater collection and sampling within the territory of the Former Heavy Fuel Oil Facilities of SIA *Valmieras Siltums* in Dzelzceļa iela 9, Valmiera (decontamination pilot project polygon), in accordance with the requirements of the current owner of the site - Valmiera City Council.
- 2. During the monitoring Stage 2, 20 soil samples and 2 groundwater samples were collected. Soil sampling was done from 2 off site and 3 in site boreholes at pilot test polygon at 4 different depth intervals. Groundwater samples were taken from previously installed monitoring well No. 11 and anode well No. 2.
- 3. Field observation and laboratory testing results shows that hydrocarbon concentration in soil is changing, so it is to be concluded that soil contamination is changing due to activity of remediation method used at site.
- Groundwater quality within the polygon perimeter is considered to be normal- existing monitoring well No. 11 gad floating oil product layer of 3 cm thickness and the contamination in samples analyzed shows intense pollution at site, most of it near the cathode row.

ANNEX 1

Borehole descriptions, plan of the boreholes

Borehole catalog

В	8H. No. 1	F1	Date 15/01/2019	Sampling	interv	al, m	Groundwater
From	То	thicknes	Geology		from	to	depth, m
0.00	-0.05	0.05	soil	VALM-F-1-1	0.00	1.00	-1.60
				VALM-F-1-2	1.00	2.00	
-0.05	-4.00	3.95	clay/ silt	VALM-F-1-3	2.00	3.00	
				VALM-F-1-4	3.00	4.00	

Site "Former Heavy Fuel Oil Facilities of SIA Valmieras Siltums", unit: Fraste Terra- In, augering, auger d= 100 mm

BH No. F2		2	Date 15/01/2019	Sampling	interval, m		Groundwater
From	То	thicknes	Geology		from	to	depth, m
0.00	-0.10	0.10	soil	VALM-F-2-1	0.00	1.00	-1.50
				VALM-F-2-2	1.00	2.00	
-0.10	-4.00	3.90	clay/ silt	VALM-F-2-3	2.00	3.00	
				VALM-F-2-4	3.00	4.00	

BH No. S-1		-1	Date 15/01/2019	Sampling	interval, m		Groundwater
From	То	thicknes	Geology	, 3	from	to	depth, m
0.00	-0.05	0.05	soil	VALM-S-1-1	0.00	1.00	-
-0.05	0.60	-0.65	sand	VALM-S-1-2	1.00	2.00	
-0.85	-4.00	3.15	clay / silt	VALM-S-1-3	2.00	3.00	
				VALM-S1-4	3.00	4.00	

BH No. S-2		-2	Date 15/01/2019	Sampling	interval, m		Groundwater
From	То	thicknes	Geology	Sumpling	from	to	depth, m
0.00	-0.05	0.05	soil	VALM-S-2-1	0.00	1.00	-2.40
-0.05	0.60	-0.65	sand	VALM-S-2-2	1.00	2.00	
-0.85	-4.00	3.15	clay / silt	VALM-S-2-3	2.00	3.00	
				VALM-S-2-4	3.00	4.00	

В	BH No. S	-3	Date 15/01/2019	Sampling	interv	al, m	Groundwater
From	То	thicknes	Geology	Sumpling	from	to	depth, m
0.00	-0.05	0.05	soil	VALM-S-3-1	0.00	1.00	-1.80
-0.05	0.75	-0.80	sand	VALM-S-3-2	1.00	2.00	
-0.85	-4.00	3.15	clay / silt	VALM-S-3-3	2.00	3.00	
				VALM-S-3-4	3.00	4.00	

Scheme Dzelzceļa iela 9, Valmiera

ANNEX 2

List of sample collection intervals and copies of laboratory testing reports

Sample list and sampling interval

ВН	Sampling interval(m from surface)	Sample Code
	0.0-1.0	VALM-F-1-1
Γ_1 (off site)	1.0-2.0	VALM-F-1-2
FI (on site)	2.0-3.0	VALM-F-1-3
	3.0-4.0	VALM-F-1-4
	0.0-1.0	VALM-F-2-1
Γ_{2} (off site)	1.0-2.0	VALM-F-2-2
F2 (on site)	2.0-3.0	VALM-F-2-3
	3.0-4.0	VALM-F-2-4
	0.0-1.0	VALM-S-1-1
S1 (in cito)	1.0-2.0	VALM-S-1-2
ST (III SICE)	2.0-3.0	VALM-S-1-3
	3.0-4.0	VALM-S-1-4
	0.0-1.0	VALM-S-2-1
S2 (in cito)	1.0-2.0	VALM-S-2-2
SZ (III SILE)	2.0-3.0	VALM-S-2-3
	3.0-4.0	VALM-S-2-4
	0.0-1.0	VALM-S-3-1
S2 (in cito))	1.0-2.0	VALM-S-3-2
ss (III site))	2.0-3.0	VALM-S-3-3
	3.0-4.0	VALM-S-3-4

SIA "Vides Konsultāciju Birojs" LABORATORIJA

Rīgā, Ezermalas ielā 28, tālr. 20255171

e-pasts: laboratorija@laboratorija.vkb.lv

TESTĒŠANAS PĀRSKATS Nr. 34-19 1. lpp. no 4

Pasūtītājs, adrese: SIA "Vides Konsultāciju Birojs", Rīga, Ezermalas iela 28

Objekta šifrs: Paraugu ņemšanas vieta – Valmiera

Paraugus iesniedza: <u>M. Burkāns</u> iesniegšanas datums: <u>16.01.2019</u>.

Testējamais materiāls: grunts

Ziņas par paraugiem: PE maiss

Par paraugu nemšanu atbilstoši standartam atbild paraugu nēmējs.

Paraugu ņēma: P. Birzgalis, M. Burkāns ("Vides Konsultāciju Birojs") 15. 01.2019.

Testēšanas rezultāti

Parauga kods: VALM-F-1-1	Lab.Nr. <u>19 – 3</u>				
Testēšanas rādītājs	Rezultāts	Testēšanas metode			
Ogļūdeņraži no C ₁₀ līdz C ₂₀ (naftas produkti), mg/kg	13	LVS EN ISO 16703-2011			
Ogļūdeņraži no C_{20} līdz C_{40} (naftas produkti), mg/kg	< 2,6	LV3 EN 150 10705.2011			

Parauga kods: VALM-F-1-2	Lab.Nr. <u>19-4</u>		
Testēšanas rādītājs	Rezultāts	Testēšanas metode	
Ogļūdeņraži no C ₁₀ līdz C ₂₀ (naftas produkti), mg/kg	1800	LVS EN ISO 16702-2011	
Ogļūdeņraži no C_{20} līdz C_{40} (naftas produkti), mg/kg	300	LVS EN 150 10703.2011	

Parauga kods: VALM-F-1-3		Lab.Nr. <u>19 – 5</u>
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C_{10} līdz C_{20} (naftas produkti), mg/kg	18	LVS EN ISO 16702-2011
Ogļūdeņraži no C_{20} līdz C_{40} (naftas produkti), mg/kg	14	LVS EN ISO 10705.2011

Parauga kods: VALM-F-1-4 Lab.Nr. <u>19 – 6</u>		Lab.Nr. <u>19 – 6</u>
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C_{10} līdz C_{20} (naftas produkti), mg/kg	140	LVS EN ISO 16702-2011
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	40	LV3 EN 150 10705.2011

Parauga kods: VALM-F-2-1 Lab.		Lab.Nr. <u>19–7</u>
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C ₁₀ līdz C ₂₀ (naftas produkti), mg/kg	150	LVS EN ISO 16703-2011
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	45	LVS EN 150 10705.2011

SIA "Vides Konsultāciju Birojs" LABORATORIJA Rīgā, Ezermalas ielā 28, tālr. 20255171

e-pasts: laboratorija@laboratorija.vkb.lv

TESTĒŠANAS PĀRSKATS Nr. <u>34-19</u> 2. lpp. no 4

Pasūtītājs, adrese: SIA "Vides Konsultāciju Birojs", Rīga, Ezermalas iela 28

Objekta šifrs: Paraugu ņemšanas vieta – Valmiera

Parauga kods: VALM-F-2-2 Lab.Nr.19 – 8			
Testēšanas rādītājs	Rezultāts	Testēšanas metode	
Ogļūdeņraži no C_{10} līdz C_{20} (naftas produkti), mg/kg	6,0**	LVS EN ISO 16703:2011	
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	< 2,6		
Parauga kods: VALM-F-2-3		Lab.Nr. <u>19 – 9</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode	
Ogļūdeņraži no C ₁₀ līdz C ₂₀ (naftas produkti), mg/kg	5,7**	L VS EN ISO 16703-2011	
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	< 2,6		
Parauga kods: VALM-F-2-4		Lab.Nr. <u>19 – 10</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode	
Ogļūdeņraži no C ₁₀ līdz C ₂₀ (naftas produkti), mg/kg	6,1**	L VS EN ISO 16703-2011	
$\begin{array}{c c} Og \bar{u} de \eta ra \check{z} i \text{ no } C_{20} \bar{u} dz C_{40} \\ (naftas produkti), mg/kg \end{array}$	< 2,6		
Parauga kods: VALM-S-1-1		Lab.Nr. <u>19 – 11</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode	
Ogļūdeņraži no C ₁₀ līdz C ₂₀ (naftas produkti), mg/kg	49	L VS EN ISO 16703-2011	
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	19	LV3 LIV 150 10703.2011	
Parauga kods: VALM-S-1-2		Lab.Nr. <u>19 – 12</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode	
Ogļūdeņraži no C ₁₀ līdz C ₂₀ (naftas produkti), mg/kg	14	L VS EN ISO 16703-2011	
$\begin{array}{c c} Og \\ \bar{l} \bar{u} de \\ \bar{n} ra \\ \bar{z} i no \\ C_{20} \\ \bar{l} \bar{l} dz \\ C_{40} \\ (naftas \ produkti) \\ , \ mg/kg \end{array}$	8,0**	EV3 EN 150 10703.2011	
Parauga kods: VALM-S-1-3	·	Lab.Nr. <u>19–13</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode	
$\begin{array}{c} Og \bar{u} de \eta ra \check{z} i \text{ no } C_{10} \bar{l} dz \ C_{20} \\ (naftas \text{ produkti}), mg/kg \end{array}$	520	LVS EN ISO 16703-2011	
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	70		
Parauga kods: VALM-S-1-4		Lab.Nr. <u>19–14</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode	
$\begin{array}{c} Og l \bar{u} de \eta raži no \ C_{10} \ l \bar{u} dz \ C_{20} \\ (naftas \ produkti) \ , \ mg/kg \end{array}$	71	LVS EN ISO 16703-2011	
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	10	L v 5 EN 150 10705.2011	

SIA "Vides Konsultāciju Birojs" LABORATORIJA Rīgā, Ezermalas ielā 28, tālr. 20255171 e-pasts: laboratorija@laboratorija.vkb.lv

TESTĒŠANAS PĀRSKATS Nr. <u>34-19</u> 3. lpp. no 4

Pasūtītājs, adrese: SIA "Vides Konsultāciju Birojs", Rīga, Ezermalas iela 28

Objekta šifrs: Paraugu nemšanas vieta – Valmiera

Parauga kods: VALM-S-2-1 Lab.Nr.19 – 15		Lab.Nr. <u>19 – 15</u>
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C_{10} līdz C_{20} (naftas produkti), mg/kg	5,0**	L VS EN ISO 16703:2011
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	< 2,6	LV3 EN 150 10705.2011
Parauga kods: VALM-S-2-2		Lab.Nr. <u>19 – 16</u>
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C_{10} līdz C_{20} (naftas produkti), mg/kg	590	L VS EN ISO 16703-2011
$\begin{array}{c} Og \bar{u} de n raži no C_{20} \bar{u} dz C_{40} \\ (naftas produkti), mg/kg \end{array}$	54	EV3 EN 150 10703.2011
Parauga kods: VALM-S-2-3		Lab.Nr. <u>19 – 17</u>
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C ₁₀ līdz C ₂₀ (naftas produkti), mg/kg	13	LVS EN ISO 16703:2011
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	8	
Parauga kods: VALM-S-2-4		Lab.Nr. <u>19 – 18</u>
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C ₁₀ līdz C ₂₀ (naftas produkti), mg/kg	43	L VS EN ISO 16703-2011
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	11	
Parauga kods: VALM-S-3-1		Lab.Nr. <u>19 – 19</u>
Testēšanas rādītājs	Rezultāts	Testēšanas metode
$\begin{array}{c} Og \bar{u} de \eta ra \check{z} i \ no \ C_{10} \ \bar{u} dz \ C_{20} \\ (naftas \ produkti) \ , \ mg/kg \end{array}$	12	LVS EN ISO 16703-2011
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	< 2,6	
Parauga kods: VALM-S-3-2		Lab.Nr. <u>19 – 20</u>
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C_{10} līdz C_{20} (naftas produkti), mg/kg	23	LVS EN ISO 16703-2011
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	3,0**	LVS EN 150 10705.2011
Parauga kods: VALM-S-3-3		Lab.Nr. <u>19 – 21</u>
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C ₁₀ līdz C ₂₀ (naftas produkti), mg/kg	950	L VS EN ISO 16702-2011
Ogļūdeņraži no C_{20} līdz C_{40} (naftas produkti), mg/kg	120	LYS EN 180 10703.2011

SIA "Vides Konsultāciju Birojs" LABORATORIJA Rīgā, Ezermalas ielā 28, tālr. 20255171 e-pasts: laboratorija@laboratorija.vkb.lv

TESTĒŠANAS PĀRSKATS Nr. <u>34-19</u> 4. lpp. no 4

Pasūtītājs, adrese: SIA "Vides Konsultāciju Birojs", Rīga, Ezermalas iela 28

Objekta šifrs: Paraugu ņemšanas vieta – Valmiera

Parauga kods: VALM-S-3-4		Lab.Nr. <u>19 – 22</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode	
Ogļūdeņraži no C ₁₀ līdz C ₂₀ (naftas produkti), mg/kg	1300	LVC EN ISO 16702-2011	
Ogļūdeņraži no C_{20} līdz C_{40} (naftas produkti), mg/kg	140	LVS EN 150 10703:2011	

Testēšana veikta: no 16.01.19. līdz 12.03.19.

Datums: 12.03.2019.

Testēšanu veica: <u>I. Fogele</u> Laboratorijas vadītāja: <u>I. Fogele</u> Vides Konsultaciju Birojs LABORATORIJA

SIA "Vides Konsultāciju Birojs" LABORATORIJA Rīgā, Ezermalas ielā 28, tālr. 20255171

e-pasts: laboratorija@laboratorija.vkb.lv

TESTĒŠANAS PĀRSKATS Nr. <u>66-19</u>

Pasūtītājs, adrese: SIA "Vides Konsultāciju Birojs", Rīgā, Ezermalas ielā 28

Objekta šifrs: Paraugu nemšanas vieta – Valmiera

Paraugus iesniedza: <u>M.Burkāns</u> iesniegšanas datums: <u>16.01.2019.</u>

Testējamais materiāls: gruntsūdens

Ziņas par paraugiem: tilpums, tara: 40 mL stikla pudeles ar PTEF oderētu vāciņu un 1 L stikla pudeles

Par paraugu ņemšanu atbilstoši standartam atbild paraugu ņēmējs.

Paraugu ņēma: P. Birzgalis, M.Burkāns ("Vides Konsultāciju Birojs") 15.01.2019.

Testēšanas rezultāti

Parauga kods: VALM-GŪ-U11 Lab.Nr.19-1

Testēšanas rādītājs	Rezultāts ± nenoteiktība*	Testēšanas metode	
Benzols, µg/L	610 ± 90		
Toluols, µg/L	980 ± 130		
Etilbenzols, µg/L	450 ± 60	150 11402 1,1007	
p-Ksilols, µg/L	900 ± 140	150 11423-1:1997	
m-Ksilols, μg/L	1000 ± 140		
o-Ksilols, µg/L	250 ± 30		
Naftas produktu ogļūdeņražu	1800 + 500	I VS EN ISO 9377-2:2001	
indekss, mg/L	1800 ± 300	LV5 EN 150 9577-2.2001	

Parauga kods: VALM-S-GŪ-2 Lab.Nr.19-2

Testēšanas rādītājs	Rezultāts ± nenoteiktība*	Testēšanas metode	
Benzols, µg/L	< 0,25		
Toluols, µg/L	< 0,25		
Etilbenzols, µg/L	< 0,25	150 11422 1.1007	
p-Ksilols, µg/L	< 0,25	150 11423-1:1997	
m-Ksilols, μg/L	< 0,25		
o-Ksilols, µg/L	< 0,50		
Naftas produktu ogļūdeņražu	$1,5 \pm 0,3$	LVS EN ISO 9377-2:2001	
indekss, mg/L	-,		

Piezīme:

* Uzrādītā nenoteiktība ir paplašinātā standartnenoteiktība, kas aprēķināta, izmantojot pārklāšanās koeficientu 2,

kurš nodrošina 95% ticamības līmeni. Standartnenoteiktība tiek aprēķināta saskaņā ar LATAK – EA – 4/02 3.izd. ** Testēšanas rezultāts atrodas diapazonā no MDL līdz QL. Šajā darba diapazonā paplašinātā nenoteiktība ir 50%.

Testēšana veikta: no 16.01.19. līdz 20.02.19.

Testēšanu veica: I. Fogele

ROBEZ

I.Fogele

Datums: <u>12.03.2019.</u>

Laboratorijas vadītāja: 🏒

ANNEX 3

Copies of licences for the use of subterranean depths and accreditation certificates

Valsts vides dienests

Rūpniecības iela 23, Rīga, LV-1045, tālr. 67084200, fakss 67084212, e-pasts vvd@vvd.gov.lv, www.vvd.gov.lv

ZEMES DZĪĻU IZMANTOŠANAS LICENCE Nr.CS18ZD0270

Izsniegta Sabiedrībai ar ierobežotu atbildību "VIDES KONSULTĀCIJU BIROJS", reģistrācijas numurs: 40003282693

(pašvaldības nosaukums, komersanta firma un reģistrācijas numurs vai fiziskās personas vārds, uzvārds un personas kods)

Zemes dzīļu monitoringa sistēmas izveide vai monitoringa veikšana

(zemes dzīļu izmantošanas veids)

Degvielas uzpildes stacijas, naftas bāzes, atkritumu izgāztuves un poligoni, rūpnieciskās apbūves teritorijas un piesārņotas vai potenciāli piesārņotas vietas

(licencētais objekts)

Latvijas teritorija

(licencētā objekta administratīvā piederība, ja iespējams, adrese)

Licence izsniegta Rīgā	2018.gada	23.oktobrī
un derīga līdz	2019.gada	1.novembrim

Pielikumā:

Nr.p.k.	Pielikuma nosaukums	Lpp. skaits
1.	zemes dzīļu izmantošanas nosacījumi	2
2.	karte vai plāns, kurā attēlo atradnes robežu, licences adresāta īpašumā vai nomā esošo zemesgabala robežas, licences laukuma robežu ar robežpunktiem; tabula ar robežpunktu koordinātām LKS-92 TM sistēmā	
3.	derīgo izrakteņu ieguves limits	1944 (<u>1</u> 479)

Licences pielikumi ir tās neatņemama sastāvdaļa

Valsts vides dienesta generaldirektore

(I.Kolegova) voceo > (paraksts un tā atšifrējums) Z.v.

Zemes dzīļu izmantošanas licenci vai tajā noteiktos nosacījumus var apstrīdēt Vides pārraudzības valsts birojā Rūpniecības iela 23, Rīgā, viena mēneša laikā no licences spēkā stāšanās dienas, iesniegumu par administratīvā akta apstrīdēšanu iesniedzot Valsts vides dienestā.

Zemes dzīļu izmantošanas nosacījumi

	1. Visparigie zemes uziju izmantosanas nosacijumi		
1.	Licences derīguma	2018.gada 2.novembris līdz 2019.gada 1.novembris	
	termiņš		
2.	Licences	a) Likuma "Par zemes dzīlēm" 10.panta pirmās daļas 3.punkta "e"	
	izsniegšanas	apakšpunkts un 2 ¹ .daļa;	
	pamatojums	b) Ministru kabineta 2011.gada 6.septembra noteikumu Nr.696	
		"Zemes dzīļu izmantošanas licenču un bieži sastopamo derīgo	
		izrakteņu ieguves atļauju izsniegšanas kārtība" (turpmāk – MK	
		noteikumi Nr.696) 4.2.apakšpunkts.	
3.	Grozījumi	Nepieciešamības gadījumā iesniegt iesniegumu grozījumu	
		veikšanai licencē un grozījumu pamatojumu Valsts vides dienestā	
		(turpmāk – VVD) (MK noteikumu Nr.696 34.punkts).	
4.	Zemes dzīļu	Zemes dzīļu izmantošana var tikt ierobežota, apturēta un licence	
	izmantošanas	atcelta likumā "Par zemes dzīlēm" 16. pantā noteiktajos gadījumos	
	ierobežošana,	un noteiktajā kārtībā.	
	apturēšana		
5.	VVD informēšana	Informet VVD elektroniski (e-pasts: vvd@vvd.gov.lv):	
		a) pirms (vēlams 5 darba dienas) monitoringa sistēmas izveides	
		un/vai veikšanas konkrētā objektā (MK noteikumu Nr.696	
		25.punkts);	
		b) par nodotajiem pārskatiem valsts SIA "Latvijas Vides,	
		ģeoloģijas un meteoroloģijas centrs" (turpmāk – LVGMC).	

I. Visnārīgie zemes dzīlu izmantošanas nosacījumi

II. Monitoringa sistēmas izveides vai monitoringa veikšanas nosacījumi

6.	Normatīvie akti	 a) Likums "Par piesārņojumu", Ministru kabineta: 2002.gada 22.janvāra noteikumi Nr.34 "Noteikumi par piesārņojošo vielu emisiju ūdenī", 2002.gada 12.marta noteikumi Nr.118 "Noteikumi par virszemes un pazemes ūdeņu kvalitāti", 2004.gada 17.februāra noteikumi Nr.92 "Prasības virszemes ūdeņu, pazemes ūdeņu un aizsargājamo teritoriju monitoringam
		 un montoringa programmu izstrader, 2005.gada 25.oktobra noteikumi Nr.804 "Augsnes un grunts kvalitātes normatīvi", 2009.gada 17.februāra noteikumi Nr.158 "Noteikumi par prasībām attiecībā uz vides monitoringu un tā veikšanas kārtību, piesārņojošo vielu reģistra izveidi un informācijas pieejamību sabiedrībai", 2011.gada 27.decembra noteikumi Nr.1032 "Atkritumu poligonu ierīkošanas, atkritumu poligonu un izgāztuvju apsaimniekošanas, slēgšanas un rekultivācijas noteikumi", 2012.gada 12.jūnija noteikumi Nr.409 "Noteikumi par vides aizsardzības prasībām degvielas uzpildes stacijām, naftas bāzēm un pārvietojamām cisternām"; b) Ņemt vērā, ka licence neatbrīvo no Latvijas Republikas likumu un citu normatīvo aktu prasību ievērošanas, kā arī paredzētajām ekspertīzēm un saskaņošanām.
7.	Monitoringa sistēmas izveide un monitoringa veikšana	 a) Noslēgt līgumu ar zemes īpašnieku, tiesisko valdītāju vai pilnvarotu personu par tiesībām veikt monitoringa sistēmas izveidi vai veikšanu (MK noteikumu Nr.696 25.punkts); b) Sastādīt monitoringa sistēmas izveides vai veikšanas programmu un saskaņot to ar darbu pasūtītāju (MK noteikumu Nr.696 25.punkts);

		D	
7.	Monitoringa	ringa c) Veikt teritorijas apsekošanu dabā, izvērtēt Valsts ģeoloģijas	
	sistēmas izveide un	fondā pieejamos materiālus un visu pasūtītāja sniegto	
	monitoringa	informāciju par objektu;	
	veikšana	d) Izstrādnu tīklu veidot un ierīkot tā, lai kontrolētu pieplūstošā un	
		aizplūstošā ūdens kvalitāti un pazemes ūdenu līmenus:	
		e) Urbuma dzilumu noteikt atkarībā no obiekta ģeoloģiski-	
		hidrogeologiskajiem anstākliem Urbums jājerīko 2.3 m dzilāk	
		narogeologiskajiem apstakļiem. Orbums jaiemko 2-5 m uzijak	
		 f) Urbumu urbženog goitā aprolectīt stagetes iežus leulus žumālā. 	
		1) Orbuinu urosanas gana apraksin aisegios iezus iauku zumaia;	
		g) Gruntsudens kvantates noteiksanai un kontrolei, izurbtajos	
		urbumos ierikoi gruntsudens noverosanas akas (turpmak – aka).	
		Filtru aka jaievieto tā, lai gruntsūdens virsma šķērsotu to pa	
		vidu;	
		h) Noteikt akām atveru absolūto augstumu, izmantojot Eiropas	
		Vertikālās atskaites sistēmas realizāciju Latvijas teritorijā un	
		koordinātas, izmantojot Latvijas 1992.gada ģeodēzisko	
		koordinātu sistēmu {LKS-92 TM};	
		i) Aprīkot aku atveres un veikt aku krāsošanu un marķēšanu (akas	
		numuru u.c.) un teritorijas labiekārtošanu ap akām;	
		j) Veikt aku dziļuma un gruntsūdens līmeņa mērījumus. Ja	
		mērījumi jāveic piesārnotā objektā, visas darbības jāveic, sākot	
		ar tīrāko aku:	
		k) Pirms paraugu nonemšanas katru novērošanas aku atsūknēt	
		Katrā konkrētajā akā veikt atsmelamā ūdens tilnuma anrēkiņu un	
		sekot līdzi jūdens atdzidrināšanās nakānes un dinamiskā līmena	
		izmainām.	
		1) Pozomog udanu un grunta norougu analizza visitet alreaditete	
		1) Laboratoriiā:	
		Taboratorija, m) Monitoringo sistāmos izveidzi uzi uzveitu izveitu i	
		izroktenu atradnu teritorijās un to onkārtnā noniosisčores serem	
		izrakteņu atradņu teritorijas un to apkartne nepieciešams saņemt	
	Q 1 11-	atsevišķu licenci VVD.	
8.	Ģeoloģiskā	a) Rezultātus apkopot monitoringa sistēmas izveides vai veikšanas	
	informacija	darbu pārskatā;	
		b) Pārskatu elektroniskā un papīra formā nodot LVĢMC līdz	
		licences derīguma termiņa beigām (Ministru kabineta 2012.gada	
		28.augusta noteikumu Nr.578 "Noteikumi par ģeoloģiskās	
		informācijas sistēmu" 4.punkts).	
9.	Vides aizsardzība	a) Nepieļaut grunts, zemes dzīļu, virszemes un pazemes ūdeņu	
		piesārņojumu vai citu kaitējumu videi;	
		b) Paredzēt pasākumus, lai tehnikas darbības laikā netiktu	
		pārsniegtas trokšnu emisiju pielaujamās vērtības:	
		c) Savākt un nodot atkritumu apsaimniekotājiem monitoringa	
		sistēmas izveides vai veikšanas laikā radušos atkritumus	
		d) Apturēt vai jerobežot monitoringa darbus, ja atklājos zinātasi	
		kultūrai un vides aizsardzībai nozīmīci šaslašiskie veideimi	
		voi aiti abiekti nekavõiatias zinat ner stulživere VVVD	
		var en objeku, nekavejones ziņot par atklajumu v v D.	

Valsts vides dienesta generaldirektore

Josephere

I.Koļegova

Zariņa 67084284 dace.zarina@vvd.gov.lv

LATVIJAS NACIONĀLAIS AKREDITĀCIJAS BIROJS

Eiropas Akreditācijas kooperācijas Daudzpusējā atzīšanas līguma (EA MLA) dalībnieks testēšanas un kalibrēšanas laboratoriju, produktu, personu un pārvaldības sistēmu sertificēšanas institūciju, inspicēšanas un verificēšanas institūciju akreditācijas jomās

AKREDITĀCIJAS APLIECĪBA

SIA "Standartizācijas, akreditācijas un metroloģijas centrs" Latvijas Nacionālais akreditācijas birojs ar šo apliecina, ka

SIA "Vides konsultāciju birojs" laboratorija

Juridiskā adrese: Pils iela 7 - 11, Rīga, LV-1050 Atrašanās vietas adrese: Ezermalas iela 28, Rīga, LV-1014

ir kompetenta veikt testēšanu atbilstoši LVS EN ISO/IEC 17025:2005 standarta prasībām nereglamentētajā sfērā:

ūdens ķīmiskā un fizikāli ķīmiskā testēšana; minerālo materiālu ķīmiskā testēšana; augsnes un augsnes ielabošanas līdzekļu (sapropelis, kūdra) fizikāli ķīmiskā testēšana un kūdras botāniskā testēšana; grunts fizikālā, fizikāli ķīmiskā un mehāniskā testēšana; notekūdeņu paraugu ņemšana

atbilstoši LVS EN ISO/IEC 17025:2005 standarta prasībām un Ministru kabineta noteikumiem reglamentētajā sfērā:

pazemes un dzeramā ūdens paraugu ņemšana, ūdens ķīmiskā un fizikāli ķīmiskā testēšana, grunts paraugu ņemšana, augsnes un grunts fizikāli ķīmiskā testēšana

Akreditācijas apliecība derīga līdz 2019. gada 7. maijam.

Akreditētā darbības sfēra definēta pielikumā uz 6 lapām, kas ir šīs akreditācijas apliecības neatņemama sastāvdaļa.

LATAK reģistrācijas Nr. LATAK-T-292-13-2005

Rīga, 2016. gada 22. jūlijs

O.Veilande SIA "Standartizācijas, akreditācijas un metroloģijas centrs" Latvijas Nacionālā akreditācijas biroja vadītāja

M.Drille Akreditācijas komisijas priekšsēdētājs Rīga

European Union European Regional Development Fund

REPORT

ON SOIL AND GROUNDWATER MONITORING STAGE 3 (pilot- test monitoring results- sample collection and analysis)

At the object Former Heavy Fuel Oil Facilities of SIA Valmieras Siltums Dzelzceļa Street 9, Valmiera

> Riga, May, 2019

REPORT

ON SOIL AND GROUNDWATER MONITORING STAGE 3 (pilot- test monitoring results- sample collection and analysis)

At the object Former Heavy Fuel Oil Facilities of SIA Valmieras Siltums Dzelzceļa Street 9, Valmiera

THE CUSTOMER:

THE CONTRACTOR:

Valmiera City Council

(from 07.08.2018.)

Contract No. 05-651/2.4.4.1/18/71

"Vides Konsultāciju Birojs", Ltd

Prepared by:

Pēteris Birzgalis Geologist

z.v.

Ezermalas iela 28, Rīga, LV-1014 Tālr.: +371 67 557 668 Fakss: +371 67 801 703 birojs@vkb.lv www.vkb.lv

TABLE OF CONTENTS
TABLE OF CONTENTS3
INTRODUCTION4
1. GEOLOGY AND HYDROGEOLOGY5
1.1. Geology5
1.2. Hydrogeology6
2. METHODOLOGY OF PERFORMED WORKS
2.1. Selection of borehole sites7
2.2. Drilling works and the collection of soil samples
2.3. Groundwater and underground water sample collection11
2.4. Laboratory testing of samples11
3. SOIL QUALITY 12
4. GROUNDWATER QUALITY14
CONCLUSION15

ANNEX 1

Plan of extraction site

ANNEX 2

List of intervals for sample collection and copies of laboratory testing reports

ANNEX 3

Copies of licences for the use of subterranean depths and accreditation certificates

INTRODUCTION

This report overviews data on soil and groundwater monitoring and laboratory testing at the potentially contaminated site "Former heavy fuel oil facilities of Valmieras Siltums, Ltd", Dzelzceļa Street 9, Valmiera.

Collection of samples and testing was done accordingly to the procedure of procurement No. VPP 2018/040P and mutually signed contract No. 05-651/2.4.4.1/18/71 (starting from 07.08.2018) between the municipality of Valmiera and Vides Konsultāciju Birojs, Ltd.

The objective: To perform cleanup/ remediation of a potentially contaminated site (is included in the Register of Contaminated and Potentially Contaminated Sites) within the scope of project "INSURE", using electrokinetic *in situ* method- pilot testing. It is planned to carry out soil and groundwater monitoring and testing, in order to evaluate the changes of contamination during the remediation process. This is one of the most significant factors to evaluate the effectiveness of this method.

The scope of works performed: monitoring stage.

Following was carried out in several phases:

- 1) The drawing up and approval of the scope of work and timing with customer and partners (experts) from Helsinki university;
- 2) the surveying of the territory jointly with the customer and the partners (experts) from Helsinki university;
- 3) Decision making mutually with the customer and partners (experts) from Helsinki university on the borehole location map;
- 4) field works: geological drilling (3 pcs. boreholes in site and 2 pcs. boreholes off site), collection of generalized soil samples;
- 5) secondary field works: pumping the water out of groundwater wells, *in situ* tests of physical and chemical parameters of groundwater, collection of samples;
- 6) laboratory testing of soil and groundwater sample quality in terms of contamination with oil products and general contamination parameters;
- 7) Summary of the results and preparation of the report.

See the following sections of the review for a detailed description of the performed works, obtained results, and conclusions.

1. GEOLOGY AND HYDROGEOLOGY

1.1. Geology

Geomorphologically the object is situated in the Trikāta rise of Ziemeļvidzeme lowland.

The thickness of Quaternary sediment in this part of Latvia is small and varies within the limits of 10 to 20 m and consists mainly of moraine sandy loam and loam poorly filtering water, as well as erratic masses of different type, as well as individual sand - gravel inclusions.

The evaluation of the data of the Geological Map of Latvia¹ of the researched territory allows to conclude that sediments poorly filtering water - sandy loam and loam can be expected in the territory under research.

The geological cross-section of the territory surveyed during the research works is comparatively simple - its upper part consists of Quaternary sediment layer on top of mid-Devonian base rock.

The geological cross-section of the object is as follows (from top to bottom) - soil or asphalt, concrete, stone chippings. Under the soil layer there is a mixed loam or earth-filled gravel with construction waste. The natural cross-section is opened to the depth of 0.6 - 1.8 m and consists of fine sand or sandy loam. Deeper, at the depth of 3.5 - 4.0 m a hard sandy loam with intermediate layers of pebbles and sand, which has been found up to the depth of approximately 16 m within the researched territory.

The overall filtration properties of Quaternary water-saturated are poor and not favourable for the migration of potential groundwater contamination either in the plan or cross-section (Kf of loose soil in the samples taken at the level of groundwater saturation is 0.3 - 0.8 m within a day).

¹ Geological Map of Latvia, 1:200 000, State Geological Service 1998

1.2. Hydrogeology

The hydro-geological situation at the object and in its vicinity is primarily affected by the geo-morphological and geological properties of its location, weather conditions and the network of drainage ditches, which serve as the principal groundwater table runoff carriers.

Groundwater table has been detected at varying depth in this region, however in the slacks (site of the researched object) it seldom exceeds 0.3-1.0 m, which promotes bogging. In elevated territories the groundwater is frequently associated with deeper water horizons of Gauja and Burtnieki suites. Regionally, the potential hazard of artesian horizon contamination is reduced by the fact that these waters are drained by the deep Gauja valley and the contamination enters surface waters.

During the drilling works, the groundwater was detected at the depth of 1.2 - 4.0 m, meanwhile, after the installation fo monitoring wells and settlement of the levels, the groundwater table stabilised at the depth of 1.70 - 2.72 m from the ground surface.

Considering the amount of the performed works, the direction of groundwater flow can be determined rather precisely, it is directed westwards or towards the railway embankment and the adjacent ditch, as well as towards the slightly more remote depression in the earth surface (slack).

2. METHODOLOGY OF PERFORMED WORKS

2.1. Selection of borehole sites

Upon the selection of borehole sites, the work order, the work program, the spatial planning (including the location of tanks, buildings and unloading areas), as well as the potential geological and hydrogeological conditions of the area and recommendations from experts University of Helsinki.

Installation of boreholes was carried out in one day- 24.04.2019. This was done it two stages:

- The first two borehole installation accordingly to recommendations from expert Martin Romantschuk (University of Helsinki);
- The other three borehole installation at the central part of the pilot test polygon, accordingly to recommendations from expert Martin Romantschuk (University of Helsinki).

Image No. 1

Collection of soil samples at the object on 24.04.2019.

The performer of monitoring collecting and sampling has a licence No. CS18ZD0270 (valid by 01.11.2019) issued by SES of the republic of Latvia.

2.2. Drilling works and the collection of soil samples

Drilling works for the collection of soil samples and for the drawing up of geological cross-section were performed on 24^{th} of April, 2019. A spiral drilling method was used to drill 5 holes up to depth of 4 meters. During the drilling, the groundwater appeared at the depth of 2.0-2.5 m from the earth surface.

The following devices/rigs and methods have been used for the works: *Fraste Terra- In*, spiral drilling with the D of 100mm, class C and D samples.

Image No. 2

Drilling works with the equipment/ mechanic drilling rig "Fraste Terra- In"

During the drilling works, soil samples were taken from each borehole in accordance with ISO 10381-5 standard. Soil samples were predominantly taken at four different intervals of depth - depth of 0.0 -0.1 m, 1.0-2.0m, 2.0- 3.0m and 3.0- 4.0m, thus enabling to determine the intensity of changes of contamination at different depths. Each sample weighed around 100- 200 grams. Each sample during the field works was split in two parts, one was sent to Ltd. "Vides Konsultāciju Birojs" for testing, but the other part was sent to University of Helsinki.

The soil taken out during the drilling process, was used for laboratory testing (30%) and the remaining 70 % of soil that was taken extracted was used to fill up boreholes, therefore, excessive soil which could be considered as hazardous waste, was not gathered.

Sampling boreholes were installed in 30-50 cm distance to the ones installed in September, 2018 and January, 2019, to ensure the sampling conditions were similar to those boreholes installed previously.

2.3. Groundwater and underground water sample collection

Groundwater samples were taken according to standard LVS ISO 5667-11:2011, in April 24, 2019, using polytetrafluoroethylene cylinder. Before collection of samples, the wells were purified from the small soil particles. During the process of purification, physical and chemical properties of groundwater were measured (pH, electrical-conductivity, and others) using calibrated instrument. Aforetime collection of samples, water was drawn off (equal to the volume of three wells) in order to achieve precise and representative groundwater results from the horizon. Floating oil product layer was detected and measured (if it was present) in the wells. In well No. 11, where floating oil product layer was detected, its thickness was measured. In total 2 groundwater samples were taken, which were prepared and packed accordingly and delivered to laboratory for further testing.

2.4. Laboratory testing of samples

Soil and groundwater samples were placed in a chemically clean, appropriate thermo-containers and delivered to an accredited laboratory for further testing. Before taking samples, temperature measurements were taken inside the boreholes. Collected samples were divided in two identical parts, from which one was delivered for further testing in Latvia, but the other was given to representatives from Helsinki University.

Testing of samples was done by an accredited laboratory "Vides Konsultāciju Birojs", Ltd.

3. SOIL QUALITY

During monitoring Stage 3, laboratory testing was performed for 20 samples for oil products (C10-C20 and C20-C40).

Below is the summary of laboratory soil testing results for monitoring Stage 3.

Table 1

Content of oil products in soil samples, September, 2018 and January, 2019.

		2021.09.2018 15.01.2018 24.04.2019							9			
			Concentration in soil sample, mg/kg									
e a D	val (m ace)		Oil products									
Sampling site ti No. Sampling inter from the suri	Sampling inter from the surf	Sample code	C10-C20	C20-C40	C10-C40	c10-C20	C20-C40	C10-C40	c10-C20	C20-C40	C10-C40	
	0.0-1.0	VALM-K-1-1	50	45	95	-	-	-	-	-	-	
	1.0-2.0	VALM-K-1-2	5 7 0	140	710	-	-	-	-	-	-	
K1	2.0-3.0	VALM-K-1-3	3100	770	3870	-	-	-	-	-	-	
	3.0-4.0	VALM-K-1-4	560	160	720	-	-	-	-	-	-	
	0.0-1.0	VALM-K-2-1	250	160	410	-	-	-	-	-	-	
	1.0-2.0	VALM-K-2-2	3100	7 50	3850	-	-	-	-	-	-	
K2	2.0-3.0	VALM-K-2-3	6200	1300	7500	-	-	-	-	-	-	
	3.0-4.0	VALM-K-2-4	1200	150	1350	-	-	-	-	-	-	
КЗ	0.0-1.0	VALM-K-3-1	65	34	99	-	-	-	-	-	-	
	1.0-2.0	VALM-K-3-2	4500	540	5040	-	-	-	-	-	-	
	2.0-3.0	VALM-K-3-3	4000	350	4350	-	-	-	-	-	-	
	3.0-4.0	VALM-K-3-4	5 7 0	90	660	-	-	-	-	-	-	
	0.0-1.0	VALM-K-4-1	84	3 7	121	-	-	-	-	-	-	
	1.0-2.0	VALM-K-4-2	2700	480	3180	-	-	-	-	-	-	
К4	2.0-3.0	VALM-K-4-3	2700	440	3140	-	-	-	-	_	-	
	3.0-4.0	VALM-K-4-4	160	32	192	-	-	-	-	_	-	
	0.0-1.0	VALM-A-1-1	<2.6	<2.6	<5.2	-	-	-	-	-	-	
6.1	1.0-2.0	VALM-A-1-2	36	5.2	41.2	-	-	-	-	-	-	
AI	2.0-3.0	VALM-A-1-3	31	3.4	34.4	-	-	-	-	-	-	
	3.0-4.0	VALM-A-1-4	20	4.4	24.4	-	-	-	-	-	-	
	0.0-1.0	VALM-A-2-1	21	3.5	24.5	-	-	-	-	-	-	
40	1.0-2.0	VALM-A-2-2	29	8.9	37.9	-	-	-	-	-	-	
AZ	2.0-3.0	VALM-A-2-3	30	6.5	36.5	-	-	-	-	-	-	
	3.0-4.0	VALM-A-2-4	<2.6	<2.6	<5.2	-	-	-	-	-	-	
	0.0-1.0	VALM-A-3-1	29	5.4	34.4	-	-	-	-	-	-	
	1.0-2.0	VALM-A-3-2	22	3.9	25.9	-	-	-	-	-	-	
AS	2.0-3.0	VALM-A-3-3	27	3.8	30.8	-	-	-	-	-	-	
	3.0-4.0	VALM-A-3-4	61	10	71	-	-	-	-	-	-	
	0.0-1.0	VALM-A-4-1	36	15	51	_		_	_	_	_	
A 4	1.0-2.0	VALM-A-4-2	32	11	43	-	-	-	-	-	-	
A4	2.0-3.0	VALM-A-4-3	28	10	38	-	-	-	-	-	-	
	3.0-4.0	VALM-A-4-4	23	7.8	30.8	-	-	-	-	-	-	

European Union European Regional Development Fund

INSUR PAR GRUNTS UN GRUNTSŪDENS PARAUGOŠANU

3. posms (pilottestu monitorings- paraugu ņemšana un analīzes)) objektā Mazuta bāze" Valmierā, Dzelzceļa ielā 9

Pārskats

F1 (outside the polygon)	0.0-1.0	VALM-F-1-1	100	61	161	13	<2.6	13	22	25	13
	1.0-2.0	VALM-F-1-2	1200	300	1500	1800	300	2100	95	2 7	122
	2.0-3.0	VALM-F-1-3	710	190	900	18	14	32	130	60	190
	3.0-4.0	VALM-F-1-4	68	36	104	140	40	180	55	28	83
E.2	0.0-1.0	VALM-F-2-1	37	31	68	150	45	195	26	30	56
(outside	1.0-2.0	VALM-F-2-2	48	16	64	6	<2.6	6	8	4	12
the	2.0-3.0	VALM-F-2-3	44	11	55	5. 7	<2.6	5.7	4	<2.6	4
polygon)	3.0-4.0	VALM-F-2-4	12	9	21	6.1	<2.6	6.1	8	<2.6	8
S1 (inside the polygon)	0.0-1.0	VALM-S-1-1	19	5.2	24.2	49	19	68	10	5	15
	1.0-2.0	VALM-S-1-2	1000	210	1210	14	8	22	1400	190	1590
polygon)	2.0-3.0	VALM-S-1-3	1600	240	1840	520	70	590	1400	130	1530
polygon)	2.0-3.0 3.0-4.0	VALM-S-1-3 VALM-S-1-4	1600 54	240 7.4	1840 61.4	520 71	70 10	590 81	1400 23	130 4	1530 27
polygon)	2.0-3.0 3.0-4.0 0.0-1.0	VALM-S-1-3 VALM-S-1-4 VALM-S-2-1	1600 54 29	240 7.4 23	1840 61.4 52	520 71 5	70 10 <2.6	590 81 5	1400 23 18	130 4 69	1530 27 5
polygon)	2.0-3.0 3.0-4.0 0.0-1.0 1.0-2.0	VALM-S-1-3 VALM-S-1-4 VALM-S-2-1 VALM-S-2-2	1600 54 29 180	240 7.4 23 50	1840 61.4 52 230	520 71 5 590	70 10 <2.6 54	590 81 5 644	1400 23 18 9	130 4 69 15	1530 27 5 24
S2 (inside the polygon)	2.0-3.0 3.0-4.0 0.0-1.0 1.0-2.0 2.0-3.0	VALM-S-1-3 VALM-S-1-4 VALM-S-2-1 VALM-S-2-2 VALM-S-2-3	1600 54 29 180 46	240 7.4 23 50 5.4	1840 61.4 52 230 51.4	520 71 5 590 13	70 10 <2.6 54 8	590 81 5 644 21	1400 23 18 9 290	130 4 69 15 28	1530 27 5 24 318
S2 (inside the polygon)	2.0-3.0 3.0-4.0 0.0-1.0 1.0-2.0 2.0-3.0 3.0-4.0	VALM-S-1-3 VALM-S-1-4 VALM-S-2-1 VALM-S-2-2 VALM-S-2-3 VALM-S-2-4	1600 54 29 180 46 15	240 7.4 23 50 5.4 <2.6	1840 61.4 52 230 51.4 15	520 71 5 590 13 43	70 10 <2.6 54 8 11	590 81 5 644 21 15	1400 23 18 9 290 90	130 4 69 15 28 13	1530 27 5 24 318 15
S2 (inside the polygon)	2.0-3.0 3.0-4.0 0.0-1.0 1.0-2.0 2.0-3.0 3.0-4.0 0.0-1.0	VALM-S-1-3 VALM-S-1-4 VALM-S-2-1 VALM-S-2-2 VALM-S-2-3 VALM-S-2-4 VALM-S-3-1	1600 54 29 180 46 15 19	240 7.4 23 50 5.4 <2.6	1840 61.4 52 230 51.4 15 22.3	520 71 5 590 13 43 12	70 10 <2.6 54 8 11 <2.6	590 81 5 644 21 15 12	1400 23 18 9 290 90 27	130 4 69 15 28 13 25	1530 27 5 24 318 15 12
S2 (inside the polygon) S3 (inside	2.0-3.0 3.0-4.0 0.0-1.0 1.0-2.0 2.0-3.0 3.0-4.0 0.0-1.0 1.0-2.0	VALM-S-1-3 VALM-S-1-4 VALM-S-2-1 VALM-S-2-2 VALM-S-2-3 VALM-S-2-4 VALM-S-3-1 VALM-S-3-2	1600 54 29 180 46 15 19 1900	240 7.4 23 50 5.4 <2.6 3.3 610	1840 61.4 52 230 51.4 15 22.3 2510	520 71 5 590 13 43 12 23	70 10 <2.6	590 81 5 644 21 15 12 26	1400 23 18 9 290 90 27 270	130 4 69 15 28 13 25 30	1530 27 5 24 318 15 12 300
S2 (inside the polygon) S3 (inside the polygon)	2.0-3.0 3.0-4.0 0.0-1.0 1.0-2.0 2.0-3.0 3.0-4.0 0.0-1.0 1.0-2.0 2.0-3.0	VALM-S-1-3 VALM-S-1-4 VALM-S-2-1 VALM-S-2-2 VALM-S-2-3 VALM-S-2-4 VALM-S-3-1 VALM-S-3-2 VALM-S-3-3	1600 54 29 180 46 15 19 1900 420	240 7.4 23 50 5.4 <2.6 3.3 610 110	1840 61.4 52 230 51.4 15 22.3 2510 530	520 71 5 590 13 43 12 23 950	70 10 <2.6 54 8 11 <2.6 3 120	590 81 5 644 21 15 12 26 1070	1400 23 18 9 290 90 27 270 800	130 4 69 15 28 13 25 30 110	1530 27 5 24 318 15 12 300 910

Soil contamination threshold values²

Target value (A)	-	-	1	-	-	1	-	-	1
Precautionary threshold value (B)	I	-	500	-	I	500	-	ŀ	500
Intensive contamination threshold value (C)	-	-	5000	-	-	5000	-	-	5000

^{3.2.2.} Critical threshold value/intensive contamination (value C) - after reaching or exceeding this value, the soil and ground functional characteristics are severely affected, or the contamination directly can affect human health or environment. Exceeding this value requires decontamination work at the site

² According to Cabinet Regulation No. 804 "Regulations on soil and ground quality", point 3, soil and ground quality has the following threshold values- 3.1.threshold value (value A)- maximal level when exceeded cannot ensure sustainable soil and ground quality.

^{3.2.} threshold values:

^{3.2.1.} precautionary threshold value (value B) - the maximal contamination level which when exceeded may potentially be harmful to human health or environment, as well as level which shall be reached after decontamination works (unless more strict requirements are not enforced).

4. GROUNDWATER QUALITY

Below is the summary of monitoring Stage 3 laboratory groundwater testing results.

In total:

- Oil product content, 2 samples.
- Total Nitrogen, 2 samples.
- Environmental pH, 2 samples.
- Floating Oil Product layer, 1 sample.

Table 2

Oil product concentration in groundwater on January and April, 2019

			Concentration in groundwater							
Date of			Oil products, mg/l							
sample collection	Borehole title and No.	Sample code		Benzole (ug/l)	Toluene (ug/l)	Ethylbenzene (ug/l)	Xylene (SUM, ug/l)			
15.01.2019	Manitaring well No. 11	VALM-GU-Ū11	1800	610	980	450	2150			
24.04.2019.	Nonitoring weir No. 11	VALM-GŪ-U11	530	-	-	-	-			
15.01.2019	Anodowall No. 2	VALM-S-GŪ-2	1.5	<0.25	<0.25	<0.25	<0.5			
24.04.2019.	Anoue wen No. 2	VALM-GŪ-A2	45	-	-	-	-			
Contamination threshold values in soil (Cab. Reg. 118.) ³										
	Target value (A) Arithmetic mean			0.2	0.5	0.5	0.5			
				2.6	25.25	30.25	30.25			
	1	5	50	60	60					

⁻ The level of pollution has exceeded the limit value, then, taking into account the geological, hydro-geological, hydro-dynamic conditions and the load caused by anthropogenic impact on the relevant territory, the necessity and technical availability of environmental remediation without implementation of such measures which could increase the hazard to human health and the environment shall be assessed, as well as it shall be assessed whether the costs for remediation and control measures of polluted groundwaters are not disproportionately high. The level of groundwater treatment shall be determined individually for each polluted area on the basis of the assessment performed. Remediation shall be carried out in accordance with the Law On Pollution and the Environmental Protection Law.

³ According to Cabinet Regulation No. 118 "Regulations Regarding the Quality of Surface Waters and Groundwaters", Annex 10 contains the following information:

⁻The level of pollution has exceeded the arithmetic mean of the guide value and the limit value, measures shall be taken in such relevant territory in order to clarify the limits of the pollution area, to assess whether the pollution does not cause risk to human health and the environment, as well to prevent further pollution of groundwaters;

CONCLUSION

- 1. In January, 2019, "Vides Konsultāciju Birojs", Ltd, specialists performed collection of soil and groundwater samples and laboratory testing (Monitoring, Stage 3) within the territory of the Former Heavy Fuel Oil Facilities of *Valmieras Siltums*, Ltd. in Dzelzceļa iela 9, Valmiera, (decontamination pilot project polygon), in accordance with the requirements of the current owner of the site Valmiera City Council.
- 2. During the monitoring Stage 3, 20 soil samples and 2 groundwater samples were collected. Soil sampling was done from 2 off site and 3 in site boreholes at pilot test polygon at 4 different depth intervals. Groundwater samples were taken from previously installed monitoring well No. 11 and anode well No. 2.
- 3. Field observation and laboratory testing results show that contamination is decreasing and also increasing within certain sample groups. Therefore, we can conclude that soil contamination at the object has changed due to the decontamination works performed at the object.
- 4. During this stage of monitoring intensive soil contamination was not observed outside the pilot-test territory. Contamination intensity in samples (sampling sites S2 and S3) within the pilot-test territory has decreased, however, in one borehole the contamination intensity has increased and returned to the initial concentration.
- 5. Groundwater quality in vicinity of the polygon is considered to be acceptable and appropriate to the situation. In monitoring well No. 11, which is located in the pilot-test polygon, floating oil product layer (5 cm thick) was observed, which shows an intensive groundwater contamination with oil products near the boreholes of cathode row. However, the oil product concentration in samples significantly exceed the contamination threshold value near anode and cathode row of wells, as it was observed at the previous stage of monitoring.

Pärskats PAR GRUNTS UN GRUNTSÜDENS PARAUGOŠANU 3. posms (pilottestu monitorings- paraugu ņemšana un analīzes)) objektā Mazuta bāze" Valmierā, Dzelzceļa ielā 9

ANNEX 1

Plan of extraction site

Site plan Dzelzceļa iela 9, Valmiera

ANNEX 2

List of intervals for sample collection and copies of laboratory testing reports

List of intervals for sample collection

Sampling spot and its No	Sampling iinterval (m from surface)	sample code
	0.0-1.0	VALM-F-1-1
F1 (outside testing site)	1.0-2.0	VALM-F-1-2
	2.0-3.0	VALM-F-1-3
	3.0-4.0	VALM-F-1-4
	0.0-1.0	VALM-F-2-1
E2 (outcide tecting cite)	1.0-2.0	VALM-F-2-2
12 (outside testing site)	2.0-3.0	VALM-F-2-3
	3.0-4.0	VALM-F-2-4
	0.0-1.0	VALM-S-1-1
S1 (incide tecting cite)	1.0-2.0	VALM-S-1-2
of fuising results sire)	2.0-3.0	VALM-S-1-3
	3.0-4.0	VALM-S-1-4
	0.0-1.0	VALM-S-2-1
	1.0-2.0	VALM-S-2-2
S2 (inside testing site)	2.0-3.0	VALM-S-2-3
	3.0-4.0	VALM-S-2-4
	0.0-1.0	VALM-S-3-1
S3 (inside testing site)	1.0-2.0	VALM-S-3-2
	2.0-3.0	VALM-S-3-3
	3.0-4.0	VALM-S-3-4

SIA "Vides Konsultāciju Birojs" LABORATORIJA

Rīgā, Ezermalas ielā 28, tālr. 20255171 e-pasts: laboratorija@laboratorija.vkb.lv

TESTĒŠANAS PĀRSKATS Nr. 351-19 1. lpp. no 4

Pasūtītājs, adrese: SIA "Vides Konsultāciju Birojs", Rīga, Ezermalas iela 28

Objekta šifrs: Paraugu nemšanas vieta – Valmiera

Paraugus iesniedza: M. Burkāns iesniegšanas datums: 26.04.2019.

Testējamais materiāls: grunts

Ziņas par paraugiem: PE maiss

Par paraugu nemšanu atbilstoši standartam atbild paraugu nēmējs.

Paraugu ņēma: P. Birzgalis, M. Burkāns ("Vides Konsultāciju Birojs") 24.04.2019.

Testēšanas rezultāti

Parauga kods: VALM-F-1-1	-	Lab.Nr. <u>215 – 3</u>
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C ₁₀ līdz C ₂₀ (naftas produkti), mg/kg	22	
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	25	LVS EN ISO 16703:2011

Parauga kods: VALM-F-1-2

Parauga kods: VALM-F-1-2	Lab.Nr. <u>215 – 4</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C ₁₀ līdz C ₂₀ (naftas produkti), mg/kg	95	
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	27	LVS EN ISO 16703:2011

Parauga kods: VALM-F-1-3	Lab.Nr. <u>215 – 5</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C ₁₀ līdz C ₂₀ (naftas produkti), mg/kg	130	LV6 EN 100 1 (702 2011
Ogļūdeņraži no C_{20} līdz C_{40} (naftas produkti), mg/kg	60	LVS EN ISO 16703:2011

Parauga kods. VALM-F-1-4

Parauga kods: VALM-F-1-4		Lab.Nr. <u>215 – 6</u>
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C ₁₀ līdz C ₂₀ (naftas produkti), mg/kg	55	
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	28	LVS EN ISO 16703:2011

Parauga kods: VALM-F-2-1

Parauga kods: VALM-F-2-1	-	Lab.Nr. <u>215–7</u>
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C ₁₀ līdz C ₂₀ (naftas produkti), mg/kg	26	
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	30	LVS EN ISO 16703:2011

SIA "Vides Konsultāciju Birojs" LABORATORIJA Rīgā, Ezermalas ielā 28, tālr. 20255171

e-pasts: laboratorija@laboratorija.vkb.lv

TESTĒŠANAS PĀRSKATS Nr. 351-19 2. lpp. no 4

Pasūtītājs, adrese: SIA "Vides Konsultāciju Birojs", Rīga, Ezermalas iela 28

Objekta šifrs: Paraugu ņemšanas vieta – Valmiera

Parauga kods: VALM-F-2-2		Lab.Nr. <u>19 – 8</u>
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C ₁₀ līdz C ₂₀ (naftas produkti), mg/kg	8,0	LVC EN ISO 1/702-2011
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	4,0	LVS EN ISO 16703:2011

Parauga kods: VALM-F-2-3	Lab.Nr. <u>19 – 9</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C ₁₀ līdz C ₂₀ (naftas produkti), mg/kg	4,0	
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	< 2,6	LVS EN 150 16/03:2011

Parauga kods: VALM-F-2-4	Lab.Nr. <u>19 – 10</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C ₁₀ līdz C ₂₀ (naftas produkti), mg/kg	8,0	
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	< 2,6	LVS EN ISO 16703:2011

Parauga kods: VALM-S-1-1	Lab.Nr. <u>19 – 11</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C ₁₀ līdz C ₂₀ (naftas produkti), mg/kg	10	
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	5,0	LVS EN ISO 16703:2011

Parauga kods: VALM-S-1-2

Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C ₁₀ līdz C ₂₀ (naftas produkti), mg/kg	1400	
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	190	LVS EN ISO 16703:2011

Lab Nr 19 – 12

Lab Nr 19-14

Parauga kods: VALM-S-1-3

Parauga kods: VALM-S-1-3	Lab.Nr. <u>19–13</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C ₁₀ līdz C ₂₀ (naftas produkti), mg/kg	1400	
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	130	LVS EN 150 16703:2011

Parauga kods: VALM-S-1-4

0		
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C ₁₀ līdz C ₂₀ (naftas produkti), mg/kg	23	
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	4,0	LVS EN ISO 16703:2011

SIA "Vides Konsultāciju Birojs" LABORATORIJA Rīgā, Ezermalas ielā 28, tālr. 20255171 e-pasts: laboratorija@laboratorija.vkb.lv

TESTĒŠANAS PĀRSKATS Nr. 351-19 3. lpp. no 4

Pasūtītājs, adrese: SIA "Vides Konsultāciju Birojs", Rīga, Ezermalas iela 28

Objekta šifrs: Paraugu ņemšanas vieta – Valmiera

Parauga kods: VALM-S-2-1		Lab.Nr. <u>19 – 15</u>
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C ₁₀ līdz C ₂₀ (naftas produkti), mg/kg	18	LVC EN 190 17702 2011
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	69	LVS EN ISO 16703:2011

Parauga kods: VALM-S-2-2		Lab.Nr. <u>19 – 16</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode	
Ogļūdeņraži no C ₁₀ līdz C ₂₀ (naftas produkti), mg/kg	9	LVG EN 100 1/202 2011	
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	15	LVS EN ISO 16703:2011	

Parauga kods: VALM-S-2-3	Lab.Nr. <u>19 – 17</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C ₁₀ līdz C ₂₀ (naftas produkti), mg/kg	290	LVC EN 160 17702 2011
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	28	LVS EN ISO 16703:2011

Parauga kods: VALM-S-2-4		Lab.Nr. <u>19 – 18</u>
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C ₁₀ līdz C ₂₀ (naftas produkti), mg/kg	90	
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	13	LVS EN ISO 16703:2011

Parauga kods: VALM-S-3-1		Lab.Nr. <u>19 – 19</u>
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C ₁₀ līdz C ₂₀ (naftas produkti), mg/kg	27	
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	25	LVS EN ISO 16703:2011

Parauga kods: VALM-S-3-2	-	Lab.Nr. <u>19 – 20</u>
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C ₁₀ līdz C ₂₀ (naftas produkti), mg/kg	270	
Ogļūdeņraži no C ₂₀ līdz C ₄₀ (naftas produkti), mg/kg	30	LVS EN ISO 16703:2011

Parauga kods: VALM-S-3-3

Lab.Nr.19 - 21 Testēšanas rādītājs Rezultāts Testēšanas metode Ogļūdeņraži no C10 līdz C20 800 (naftas produkti), mg/kg LVS EN ISO 16703:2011 Oglūdeņraži no C20 līdz C40 110 (naftas produkti), mg/kg

SIA "Vides Konsultāciju Birojs" LABORATORIJA Rīgā, Ezermalas ielā 28, tālr. 20255171 e-pasts: laboratorija@laboratorija.vkb.lv

TESTĒŠANAS PĀRSKATS Nr. 351-19 4. lpp. no 4

Pasūtītājs, adrese: SIA "Vides Konsultāciju Birojs", Rīga, Ezermalas iela 28

Objekta šifrs: Paraugu ņemšanas vieta – Valmiera

Parauga kods: VALM-S-3-4	Lab.Nr. <u>19 – 22</u>	
Testēšanas rādītājs	Rezultāts	Testēšanas metode
Ogļūdeņraži no C ₁₀ līdz C ₂₀ (naftas produkti), mg/kg	160	LVC EN ICO 1(702-2011
Ogļūdeņraži no C_{20} līdz C_{40} (naftas produkti), mg/kg	17	- LVS EN ISO 16703:2011

Testēšana veikta: no 26.04.19. līdz 11.05.19.

Datums: 13.05.2019.

Testēšanu veica: <u>I. Fogele</u>
Laboratorijas vadītāja:1.Fogele
Vides Konsultaciju Birojs
LABORATOMIA
UNAS REPORT

SIA "Vides Konsultāciju Birojs" LABORATORIJA

Rīgā, Ezermalas ielā 28, tālr. 20255171 e-pasts: laboratorija@laboratorija.vkb.lv

TESTĒŠANAS PĀRSKATS Nr. 350-19

Pasūtītājs, adrese: SIA "Vides Konsultāciju Birojs", Rīgā, Ezermalas ielā 28

Objekta šifrs: Paraugu nemšanas vieta – Valmiera

Paraugus iesniedza: M. Burkāns iesniegšanas datums: 26.04.2019.

Testējamais materiāls: gruntsūdens

Ziņas par paraugiem: tilpums, tara: 40 mL stikla pudeles ar PTEF oderētu vāciņu un 1 L stikla pudeles

Par paraugu ņemšanu atbilstoši standartam atbild paraugu ņēmējs.

Paraugu ņēma M. Burkāns ("Vides Konsultāciju Birojs") 24.04.2019.

Testēšanas rezultāti

Parauga kods: VALM-GŪ-A2	Lab.Nr. <u>215 - 1</u>	
Testēšanas rādītājs	Rezultāts ± nenoteiktība*	Testēšanas metode
Naftas produktu ogļūdeņražu indekss, mg/L	45 ± 9	LVS EN ISO 9377-2:2001
pH 20°C	6,2	LVS EN ISO 10523:2012
Elektrovadītspēja 25°C, μS/cm	20200	LVS EN 27888–1993

Parauga kods: VALM-GŪ-U11

Lab.Nr.215 - 2 Testēšanas rādītājs Rezultāts ± nenoteiktība* Testēšanas metode Naftas produktu ogļūdeņražu 530 ± 110 LVS EN ISO 9377-2:2001 indekss, mg/L pH 20°C 6,2 LVS EN ISO 10523:2012 Elektrovadītspēja 25°C, 4280 LVS EN 27888-1993 uS/cm

Piezīme.

* Uzrādītā nenoteiktība ir paplašinātā standartnenoteiktība, kas aprēķināta, izmantojot pārklāšanās koeficientu 2, kurš nodrošina 95% ticamības līmeni. Standartnenoteiktība tiek aprēķināta saskaņā ar LATAK – EA – 4/02 3.izd. Rezultāta nenoteiktība tiek uzrādīta, ja rezultāts ir lielāks vai vienāds ar QL (kvantitatīvi nosakāmā koncentrācija).

Testēšana veikta: no 26.04.19. līdz 02.05.19.

Datums: 13.05.2019.

Testēšanu veica: I. Fogele, A. Balode Laboratorijas vadītāja: 13 Juni I.Fogele VIJAS REPU

SIA "Vides audits" laboratorija

Dzērbenes iela 27, Rīga, LV-1006 tālr.: 67556152, fakss: 67545146 www.videsaudits.lv info@videsaudits.lv

30.04.2019

TESTĒŠANAS PĀRSKATS Nr. 2260-26.04-19

1. Informācija par pasūtītāju

Pasūtītājs: Vides Konsultāciju birojs, SIA

Adrese: Ezermalas iela 28, Rīga, Latvija, LV-1014

Tālrunis: 67557668,29336167

Fakss: 67801703

2. Pasūtītāja informācija par paraugiem:

Objekts: Valmiera

Paraugu ņemšanas datums: 24.04.2019

N.p.k.	Ņemšanas vieta	Parauga veids
1	VALM-GŪ-A2	gruntsūdens
2	VALM-GŪ-U11	gruntsūdens

3. Paraugu apraksts

N.p.k.	Trauka veids	Daudzums
1	plastmasas pudele	1L
2	plastmasas pudele	1L

Paraugu pieņemšanas datums: 26.04.2019

Testēšanas rezultāti

Testēšanas izpildes sākuma/beigu datums: 26.04.2019/30.04.2019

Nosakāmais rādītājs	Mērv.	Rezultāts	Rezultāta ~ nenoteiktība	Testēšanas metodes Nr.
	1.	paraugs - VALN	-GŪ-A2	
Kopējais slāpeklis, Nkop.	mg/L	1874	112	LVS ISO 10048:2002 [#]
	2. p	araugs - VALM	-GŪ-U11	
Kopējais slāpeklis, Nkop.	mg/L	520	31	LVS ISO 10048:2002#

~ uzdotā nenoteiktība ir paplašinātā nenoteiktība, kas aprēķināta, izmantojot A tipa (statistisko) pieeju un pārklāšanās koeficientu

2, kurš nodrošina 95% ticamības līmeni

Rezultāti, kas mazāki par metodes noteikšanas robežu (MDL), uzdoti ar zīmi "< ".

Skaitlis, kas atrodas aiz zīmes "< ", ir vienāds ar MDL.

[¤] norāda metodi, kura neietilpst laboratorijas akreditācijas sfērā.

Testēšanas rezultāti attiecas tikai uz konkrētajiem paraugiem!

Paraugu ņemšanu veicis pasūtītājs.

Testēšanas laboratorija nav atbildīga par pasūtītāja sniegtajām ziņām p.2.

Laboratorijas vadītājas vietniece:

Natalija Gorbunova

Bez SIA "Vides audits" laboratorijas rakstiskas atļaujas testēšanas pārskata reproducēšana nepilnā apjomā ir aizliegta!

Testēšanas pārskats Nr. 2260-26.04-19

I-KD-5-19-3-15-03-2007

ANNEX 3

Copies of licences for the use of subterranean depths and accreditation certificates

Valsts vides dienests

Rūpniecības iela 23, Rīga, LV-1045, tālr. 67084200, fakss 67084212, e-pasts vvd@vvd.gov.lv, www.vvd.gov.lv

ZEMES DZĪĻU IZMANTOŠANAS LICENCE Nr.CS18ZD0270

Izsniegta Sabiedrībai ar ierobežotu atbildību "VIDES KONSULTĀCIJU BIROJS", reģistrācijas numurs: 40003282693

(pašvaldības nosaukums, komersanta firma un reģistrācijas numurs vai fiziskās personas vārds, uzvārds un personas kods)

Zemes dzīļu monitoringa sistēmas izveide vai monitoringa veikšana

(zemes dzīļu izmantošanas veids)

Degvielas uzpildes stacijas, naftas bāzes, atkritumu izgāztuves un poligoni, rūpnieciskās apbūves teritorijas un piesārņotas vai potenciāli piesārņotas vietas

(licencētais objekts)

Latvijas teritorija

(licencētā objekta administratīvā piederība, ja iespējams, adrese)

Licence izsniegta Rīgā	2018.gada	23.oktobrī
un derīga līdz	2019.gada	1.novembrim

Pielikumā:

Nr.p.k.	Pielikuma nosaukums	Lpp. skaits
1.	zemes dzīļu izmantošanas nosacījumi	2
2.	karte vai plāns, kurā attēlo atradnes robežu, licences adresāta īpašumā vai nomā esošo zemesgabala robežas, licences laukuma robežu ar robežpunktiem; tabula ar robežpunktu koordinātām LKS-92 TM sistēmā	
3.	derīgo izrakteņu ieguves limits	Gerd State 7 2

Licences pielikumi ir tās neatņemama sastāvdaļa

Valsts vides dienesta generaldirektore

(I.Kolegova) experies > (paraksts un tā atšifrējums) Z.v.

Zemes dzīļu izmantošanas licenci vai tajā noteiktos nosacījumus var apstrīdēt Vides pārraudzības valsts birojā Rūpniecības iela 23, Rīgā, viena mēneša laikā no licences spēkā stāšanās dienas, iesniegumu par administratīvā akta apstrīdēšanu iesniedzot Valsts vides dienestā.

Zemes dzīļu izmantošanas nosacījumi

	1	sparigie zemes uziju izmantosanas nosacijumi		
1.	Licences derīguma	2018.gada 2.novembris līdz 2019.gada 1.novembris.		
	termiņš			
2.	Licences	a) Likuma "Par zemes dzīlēm" 10. panta pirmās daļas 3. punkta "e"		
	izsniegšanas	apakšpunkts un 2 ¹ .dala;		
	pamatojums	b) Ministru kabineta 2011.gada 6.septembra noteikumu Nr.696		
		"Zemes dzīļu izmantošanas licenču un bieži sastopamo derīgo		
		izrakteņu ieguves atļauju izsniegšanas kārtība" (turpmāk – MK		
		noteikumi Nr.696) 4.2.apakšpunkts.		
3.	Grozījumi	Nepieciešamības gadījumā iesniegt iesniegumu grozījumu		
		veikšanai licencē un grozījumu pamatojumu Valsts vides dienestā		
		(turpmāk – VVD) (MK noteikumu Nr.696 34.punkts).		
4.	Zemes dzīļu	Zemes dzīļu izmantošana var tikt ierobežota, apturēta un licence		
	izmantošanas	atcelta likumā "Par zemes dzīlēm" 16.pantā noteiktaios gadījumos		
	ierobežošana,	un noteiktajā kārtībā.		
	apturēšana			
5.	VVD informēšana	Informēt VVD elektroniski (e-pasts: vvd@vvd.gov.lv):		
		a) pirms (vēlams 5 darba dienas) monitoringa sistēmas izveides		
		un/vai veikšanas konkrētā objektā (MK noteikumu Nr.696		
		25.punkts);		
		b) par nodotajiem pārskatiem valsts SIA "Latvijas Vides.		
		ģeoloģijas un meteoroloģijas centrs" (turpmāk – LVGMC).		

I. Visnārīgie zemes dzīlu izmantošanas nosacījumi

II. Monitoringa sistēmas izveides vai monitoringa veikšanas nosacījumi

6. Normatīvie akti	 a) Likums "Par piesārņojumu", Ministru kabineta: 2002.gada 22.janvāra noteikumi Nr.34 "Noteikumi par piesārņojošo vielu emisiju ūdenī", 2002.gada 12.marta noteikumi Nr.118 "Noteikumi par virszemes un pazemes ūdeņu kvalitāti", 2004.gada 17.februāra noteikumi Nr.92 "Prasības virszemes ūdeņu, pazemes ūdeņu un aizsargājamo teritoriju monitoringam
7. Monitoringa	 un monitoringa programmu izstradei", 2005.gada 25.oktobra noteikumi Nr.804 "Augsnes un grunts kvalitātes normatīvi", 2009.gada 17.februāra noteikumi Nr.158 "Noteikumi par prasībām attiecībā uz vides monitoringu un tā veikšanas kārtību, piesārņojošo vielu reģistra izveidi un informācijas pieejamību sabiedrībai", 2011.gada 27.decembra noteikumi Nr.1032 "Atkritumu poligonu ierīkošanas, atkritumu poligonu un izgāztuvju apsaimnickošanas, slēgšanas un rekultivācijas noteikumi", 2012.gada 12.jūnija noteikumi Nr.409 "Noteikumi par vides aizsardzības prasībām degvielas uzpildes stacijām, naftas bāzēm un pārvietojamām cisternām"; b) Ņemt vērā, ka licence neatbrīvo no Latvijas Republikas likumu un citu normatīvo aktu prasību ievērošanas, kā arī paredzētajām ekspertīzēm un saskaņošanām.
sistēmas izveide un monitoringa veikšana	 a) Nosiegt ligumu ar zemes ipasnieku, tiesisko valdītāju vai pilnvarotu personu par tiesībām veikt monitoringa sistēmas izveidi vai veikšanu (MK noteikumu Nr.696 25.punkts); b) Sastādīt monitoringa sistēmas izveides vai veikšanas programmu un saskaņot to ar darbu pasūtītāju (MK noteikumu Nr.696 25.punkts);

7.	Monitoringa	c) Veikt teritorijas apsekošanu dabā, izvērtēt Valsts ģeoloģijas		
	sistēmas izveide un	fondā pieejamos materiālus un visu pasūtītāja sniegto		
	monitoringa	informāciju par objektu;		
	veiksana	d) Izstrādņu tīklu veidot un ierīkot tā, lai kontrolētu pieplūstošā un		
		aizplūstošā ūdens kvalitāti un pazemes ūdeņu līmeņus;		
		e) Urbuma dziļumu noteikt atkarībā no objekta ģeoloģiski-		
		hidroģeoloģiskajiem apstākļiem. Urbums jāierīko 2-3 m dziļāk		
		par gruntsūdens horizonta virsmu;		
		1) Urbumu urbšanas gaitā aprakstīt atsegtos iežus lauku žurnālā;		
		g) Gruntsūdens kvalitātes noteikšanai un kontrolei, izurbtajos		
		urbumos ierikot gruntsūdens novērošanas akas (turpmāk – aka).		
		Filtru aka jaievieto ta, lai gruntsudens virsma šķērsotu to pa		
		vidu;		
		h) Noteikt akam atveru absolūto augstumu, izmantojot Eiropas		
		Vertikalas atskaites sistemas realizaciju Latvijas teritorijā un		
		koordinatas, izmantojot Latvijas 1992.gada geodezisko		
		koordinalu sistemu {LKS-92 IM};		
		numuru u c) un teritorijos lobiekārtošonu on ekām:		
		i) Veikt aku dziluma un gruntsūdens līmena mērījumus. Ia		
		mērījumi jāveic niesārnotā objektā visas darbības jāveic sākot		
		ar tīrāko aku:		
		k) Pirms paraugu nonemšanas katru novērošanas aku atsūknēt		
		Katrā konkrētajā akā veikt atsmelamā ūdens tilpuma aprēkiņu un		
		sekot līdzi ūdens atdzidrināšanās pakāpes un dinamiskā līmena		
		izmaiņām;		
		1) Pazemes ūdeņu un grunts paraugu analīzes veikt akreditētā		
		laboratorijā;		
		m)Monitoringa sistēmas izveidei vai monitoringa veikšanai derīgo		
		izrakteņu atradņu teritorijās un to apkārtnē nepieciešams saņemt		
		atsevišķu licenci VVD.		
8.	Ģeoloģiskā	a) Rezultātus apkopot monitoringa sistēmas izveides vai veikšanas		
	informācija	darbu pārskatā;		
		b) Pārskatu elektroniskā un papīra formā nodot LVĢMC līdz		
		licences derīguma termiņa beigām (Ministru kabineta 2012.gada		
		28.augusta noteikumu Nr.578 "Noteikumi par ģeoloģiskās		
	X7:1 · · · ·	informācijas sistēmu" 4.punkts).		
9.	Vides aizsardzība	a) Nepieļaut grunts, zemes dzīļu, virszemes un pazemes ūdeņu		
		piesārņojumu vai citu kaitējumu videi;		
		b) Paredzet pasakumus, lai tehnikas darbības laikā netiktu		
		parsmegtas troksių emisijų piejaujamas vertibas;		
		sistēmas izveides vai veikšonas laikā radužas stluitumus		
		b) Apturēt vai ierobežot monitoringa darbus, ja atklājas zinātnai		
		u) Apruret var rerobezot monitoringa darbus, ja atklajas zinatnei,		
		vai oiti obiekti nekaväioties zinet ner ethiziven UUD		
		VALUIT UDIENTI. HENAVEIULIEN ZITIOL DAF AIKTAITIMIT V V D		

Valsts vides dienesta generaldirektore

Josephere

I.Koļegova

Zariņa 67084284 dace.zarina@vvd.gov.lv

LATVIJAS NACIONĀLAIS AKREDITĀCIJAS BIROJS

Eiropas Akreditācijas kooperācijas Daudzpusējā atzīšanas līguma (EA MLA) dalībnieks testēšanas un kalibrēšanas laboratoriju, produktu, personu un pārvaldības sistēmu sertificēšanas institūciju, inspicēšanas un verificēšanas institūciju akreditācijas jomās

AKREDITĀCIJAS APLIECĪBA

Valsts aģentūra "Latvijas Nacionālais akreditācijas birojs" ar šo apliecina, ka

Sabiedrības ar ierobežotu atbildību "VIDES KONSULTĀCIJU BIROJS" laboratorija

Juridiskā adrese: Pils iela 7 - 11, Rīga, LV-1050 Atrašanās vietas adrese: Ezermalas iela 28, Rīga, LV-1014

ir kompetenta veikt testēšanu atbilstoši standarta LVS EN ISO/IEC 17025:2005 prasībām nereglamentētajā sfērā:

ūdens ķīmiskā un fizikāli ķīmiskā testēšana; augsnes un augsnes ielabošanas līdzekļu (sapropelis, kūdra) fizikāli ķīmiskā testēšana un kūdras botāniskā sastāva noteikšana; grunts fizikālā, fizikāli ķīmiskā testēšana; notekūdeņu paraugu ņemšana

atbilstoši standarta LVS EN ISO/IEC 17025:2005 prasībām un Ministru kabineta noteikumiem reglamentētajā sfērā:

pazemes un dzeramā ūdens paraugu ņemšana, ūdens ķīmiskā un fizikāli ķīmiskā testēšana, grunts paraugu ņemšana, augsnes un grunts fizikāli ķīmiskā testēšana

Akreditācijas apliecība derīga līdz 2024. gada 7. maijam.

Akreditētā darbības sfēra nereglamentētā un reglamentētā sfērā definēta pielikumā uz 8 lapām, kas ir šīs akreditācijas apliecības neatņemama sastāvdaļa.

LATAK reģistrācijas Nr. LATAK-T-292-16-2005

Rīga, 2019. gada 3. maijs

Lillarina

L. Māriņa Akreditācijas komisijas priekšsēdētājs

M. Ozoliņš Valsts aģentūras "Latvijas Nacionālais akreditācijas birojs" direktora p.i